Урок "Индукция магнитного поля. Магнитный поток". Индукция магнитного поля. Магнитный поток Физика конспект урока 9 магнитный поток

Тема сегодняшнего занятия посвящена важной теме - «Магнитный поток». Для начала мы вспомним, что такое электромагнитная индукция. После поговорим, за счет чего возникает индукционный ток и что является главным для того, чтобы этот ток появился. На опытах Фарадея мы узнаем, как возникает магнитный поток.

Продолжая изучение темы «Электромагнитная индукция» давайте подробнее остановиться на таком понятии, как магнитный поток .

Вы уже знаете, как обнаружить явление электромагнитной индукции - если замкнутый проводник пересекают магнитные линии, в этом проводнике возникает электрический ток. Такой ток называется индукционным.

Теперь давайте обсудим, за счет чего образуется этот электрический ток и что является главным для того, чтобы этот ток появился.

Прежде всего, обратимся к опыту Фарадея и посмотрим еще раз на его важные особенности.

Итак, у нас в наличии есть амперметр, катушка с большим числом витков, которая накоротко прикреплена к этому амперметру.

Берем магнит, и точно так же, как на предыдущем уроке, опускаем этот магнит внутрь катушки. Стрелка отклоняется, то есть в данной цепи существует электрический ток.

Рис. 1. Опыт по обнаружению индукционного тока

А вот когда магнит находится внутри катушки электрического тока в цепи нет. Но стоит только попытаться этот магнит достать из катушки, как в цепи вновь появляется электрический ток, но направление этого тока изменяется на противоположное.

Обратите внимание также на то, что значение электрического тока, который протекает в цепи, зависит еще и от свойств самого магнита. Если взять другой магнит и проделать тот же эксперимент, значение тока существенно меняется, в данном случае ток становится меньше.

Проведя эксперименты, можно сделать вывод о том, что электрический ток, который возникает в замкнутом проводнике (в катушке), связан с магнитным полем постоянного магнита.

Иными словами, электрический ток зависит от какой-то характеристики магнитного поля. А мы уже ввели такую характеристику - .

Напомним, что магнитная индукция обозначается буквой , это - векторная величина. И измеряется магнитная индукция в теслах.

Тесла - в честь европейского и американского ученого Николы Тесла.

Магнитная индукция характеризует действие магнитного поля на проводник с током, помещенный в это поле.

Но, когда мы говорим об электрическом токе, то должны понимать, что электрический ток, и это вы знаете из 8 класса, возникает под действием электрического поля.

Следовательно, можно сделать вывод о том, что электрический индукционный ток появляется за счет электрического поля, который в свою очередь образуется в результате действия магнитного поля. И такая взаимосвязь как раз осуществляется за счет магнитного потока .

Что же такое магнитный поток?

Магнитный поток обозначается буквой Ф и выражается в таких единицах, как вебер, и обозначается .

Магнитный поток можно сравнить с потоком жидкости, протекающей через ограниченную поверхность. Если взять трубу, и в этой трубе протекает жидкость, то, соответственно, через площадь сечения трубы будет протекать определенный поток воды.

Магнитный поток по такой аналогии характеризует, какое количество магнитных линий будет проходить через ограниченный контур. Этот контур это и есть площадка, ограниченная проволочным витком или, может быть, какой-либо другой формой, при этом обязательно эта площадь - ограниченная.

Рис. 2. В первом случае магнитный поток максимален. Во втором случае - равен нулю.

На рисунке изображены два витка. Один виток - это проволочный виток, через который проходят линии магнитной индукции. Как видите, этих линий здесь изображено четыре. Если бы их было гораздо больше, то мы бы говорили, что магнитный поток будет большой. Если бы этих линий было меньше, например, мы бы нарисовали одну линию, то тогда бы мы могли сказать, что магнитный поток достаточно мал, он небольшой.

И еще один случай: тогда, когда виток располагается таким образом, что через его площадь не проходят магнитные линии. Такое впечатление, что линии магнитной индукции скользят по поверхности. В этом случае можно сказать, что магнитный поток отсутствует, т.е. нет линий, которые пронизывали бы поверхность этого контура.

Магнитный поток характеризует весь магнит в целом (либо другой источник магнитного поля). Если магнитная индукция характеризует действие в какой-то одной точке, то магнитный поток - весь магнит целиком. Можно сказать о том, что магнитный поток - это вторая очень важная характеристика магнитного поля. Если магнитную индукцию называют силовой характеристикой магнитного поля, то магнитный поток - это энергетическая характеристика магнитного поля.

Вернувшись к экспериментам, можно сказать о том, что каждый виток катушки можно представить как отдельный замкнутый виток. Тот самый контур, через который и будет проходить магнитный поток вектора магнитной индукции. В этом случае будет наблюдаться индукционный электрический ток.

Т.о., именно под действием магнитного потока создается электрическое поле в замкнутом проводнике. А уже это электрическое поле создает не что иное, как электрический ток.

Давайте посмотрим еще раз на эксперимент, и теперь, уже зная, что существует магнитный поток, посмотрим на связь магнитного потока и значение индукционного электрического тока.

Возьмем магнит и достаточно медленно пропустим его через катушку. Значение электрического тока меняется очень незначительно.

Если же попытаться вытащить магнит быстро, то значение электрического тока будет больше, чем в первом случае.

В данном случае роль играет скорость изменения магнитного потока. Если изменение скорости магнита будет достаточно большим, значит, и индукционный ток тоже будет значительным.

В результате такого рода экспериментов были выявлены следующие закономерности.

Рис. 3. От чего зависят магнитный поток и индукционный ток

1. Магнитный поток пропорционален магнитной индукции.

2. Магнитный поток прямо пропорционален площади поверхности контура, через который проходят линии магнитной индукции.

3. И третье - зависимость магнитного потока от угла расположения контура. Мы уже обращали внимание на то, что, если площадь контура тем или иным образом, это оказывает влияние на наличие и величину магнитного потока.

Таким образом, можно сказать, что сила индукционного тока прямо пропорциональна скорости изменения магнитного потока.

∆ Ф - это изменение магнитного потока.

∆ t - это время, в течение которого изменяется магнитный поток.

Отношение - это как раз и есть скорость изменения магнитного потока.

Исходя из этой зависимости, можно сделать вывод, что, например, индукционный ток может быть создан и достаточно слабым магнитом, но при этом скорость движения этого магнита должна быть очень большой.

Первым человеком, который этот закон получил, был английский ученый М. Фарадей. Понятие магнитного потока позволяет глубже взглянуть на единую природу электрических и магнитных явлений.

Список дополнительной литературы:

Элементарный учебник физики. Под ред. Г.С. Ландсберга, Т. 2. М., 1974 Яворский Б.М., Пинский А.А., Основы физики, т.2., М. Физматлит., 2003 А так ли хорошо знакомы вам потоки?// Квант. — 2009. — № 3. — С. 32-33. Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н.Н.Ракина, К. С. Фарино; Под ред. К. С. Фарино. — Мн.: Адукацыя i выхаванне, 2004. — C.344.

«Физика - 11 класс»

Электромагнитная индукция

Английский физик Майкл Фарадей был уверен в единой природе электрических и магнитных явлений.
Изменяющееся во времени магнитное поле порождает электрическое поле, а изменяющееся электрическое поле - магнитное.
В 1831 году Фарадей открыл явление электромагнитной индукции, легшее в основу устройства генераторов, превращающих механическую энергию в энергию электрического тока.


Явление электромагнитной индукции

Явление электромагнитной индукции - это возникновении электрического тока в проводящем контуре, который либо покоится в переменном во времени магнитном поле, либо движется в постоянном магнитном поле таким образом, что число линий магнитной индукции, пронизывающих контур, меняется.

Для своих многочисленных опытов Фарадей использовал две катушки, магнит, выключатель, источник постоянного тока и гальванометр.

Электрический ток способен намагнитить кусок железа. Не может ли магнит вызвать появление электрического тока?

В результате опытов Фарадей установил главные особенности явления электромагнитной индукции:

1). индукционный ток возникает в одной из катушек в момент замыкания или размыкания электрической цепи другой катушки, неподвижной относительно первой.

2) индукционный ток возникает при изменении силы тока в одной из катушек с помощью реостата 3). индукционный ток возникает при движении катушек относительно друг друга 4). индукционный ток возникает при движении постоянного магнита относительно катушки

Вывод:

В замкнутом проводящем контуре возникает ток при изменении числа линий магнитной индукции, пронизывающих поверхность, ограниченную этим контуром.
И чем быстрее меняется число линий магнитной индукции, тем больше возникающий индукционный ток.

При этом не важно. что является причиной изменения числа линий магнитной индукции.
Это может быть и изменение числа линий магнитной индукции, пронизывающих поверхность, ограниченную неподвижным проводящим контуром, вследствие изменения силы тока в соседней катушке,

и изменение числа линий индукции вследствие движения контура в неоднородном магнитном поле, густота линий которого меняется в пространстве, и т.д.

Магнитный поток

Магнитный поток - это характеристика магнитного поля, которая зависит от вектора магнитной индукции во всех точках поверхности, ограниченной плоским замкнутым контуром.

Есть плоский замкнутый проводник (контур), ограничивающий поверхность площадью S и помещенный в однородное магнитное поле.
Нормаль (вектор, модуль которого равен единице) к плоскости проводника составляет угол α с направлением вектора магнитной индукции

Магнитным потоком Ф (потоком вектора магнитной индукции) через поверхность площадью S называют величину, равную произведению модуля вектора магнитной индукции на площадь S и косинус угла α между векторами и :

Ф = BScos α

где
Вcos α = В n - проекция вектора магнитной индукции на нормаль к плоскости контура.
Поэтому

Ф = B n S

Магнитный поток тем больше, чем больше В n и S .

Магнитный поток зависит от ориентации поверхности, которую пронизывает магнитное поле.

Магнитный поток графически можно истолковать как величину, пропорциональную числу линий магнитной индукции, пронизывающих поверхность площадью S .

Единицей магнитного потока является вебер .
Магнитный поток в 1 вебер (1 Вб ) создается однородным магнитным полем с индукцией 1 Тл через поверхность площадью 1 м 2 , расположенную перпендикулярно вектору магнитной индукции.

МБОУ Локотская СОШ №1 им. П.А. Маркова

Открытый урок

по теме

« Магнитный поток. Электромагнитная индукция»

Учитель Головнева Ирина Александровна

Тип урока: комбинированный

Цели урока:

Образовательная: изучить физические особенности явления электомагнитной индукции, сформировать понятия: электомагнитная индукция, индукционный ток, магнитный поток.

развивающая: формировать у учащихся умение выделять главное и существенное в излагаемом разными способами материале, развитие познавательных интересов и способностей школьников при выявлении сути процессов.

воспитательная : воспитывать трудолюбие, культуру поведения, точность и четкость при ответе, умение видеть физику вокруг себя.

Задачи урока

Обучающие:

    изучить явление электромагнитной индукции и условия его возникновения;

    рассмотреть историю вопроса о связи магнитного поля и электрического;

    показать причинно-следственные связи при наблюдении явления электромагнитной индукции,

    способствовать актуализации, закреплению и обобщению полученных знаний, самостоятельному конструированию новых знаний.

Развивающие: способствовать развитию умения работать в коллективе, высказывать собственные суждения и аргументировать свою точку зрения.

Воспитательные:

    способствовать развитию познавательных интересов учащихся;

    способствовать моделированию собственной системы ценностей, базирующихся на идее саморазвития.

Последовательность изложения нового материала

    Магнитный поток.

    История открытия явления электромагнитной индукции.

    Демонстрация опытов Фарадея по электромагнитной индукции.

    Практическое применение явления электромагнитной индукции.

Оборудование

Разборный трансформатор, гальванометр, постоянный магнит, реостат, амперметр, магнитная стрелка, ключ, соединительные провода, модель генератора, мультимедийный проектор,аудиозапись, презентация по теме.

План урока.

1. Организационный момент.

2. Актуализация знаний.

На предыдущих занятиях мы рассмотрели магнитное поле и характеристику магнитного поля, его действие на проводник с током и на движущийся заряд.

1. Что является источником магнитного поля?

2.Какая физическая величина является характеристикой магнитного поля?

3.Какие существуют правила для определения направления вектора магнитной индукции?

Сегодня тема нашего занятия « Магнитный поток. Открытие явления электромагнитной индукции»

Нам предстоит рассмотреть вопросы:

1.Магнитный поток.

2.История открытия явления электромагнитной индукции.

3.Демонстрация опытов Фарадея по электромагнитной индукции.

4.Значение открытия явления электромагнитной индукции.

3. Изучение нового материала

(Используются слайды презентации, интерактивная доска, оборудование для демонстрации опытов, аудиозапись).

1.Магнитный поток (определение, способы изменения, размерность, формула). Повторение 9 класса. Закрепление с помощью слайдов презентации.

1. Изучение электромагнитных явлений показывает, что вокруг электрического тока всегда существует магнитное поле. (Демонстрация опыта Эрстеда). Электрический ток и магнитное поле связаны друг от друга.

Но если электрический ток «создаёт» магнитное поле, то не существует ли обратного явления? Нельзя ли с помощью магнитного поля «создать» электрический ток? Такую задачу в 1821 году поставил перед собой английский учёный М. Фарадей.

На экране портрет М. Фарадея (1791 - 1867).

Учитель на фоне музыки знакомит с жизнью и деятельностью Фарадея.

Над поставленной перед собою задачей Фарадей работал 10 лет. Он открыл электромагнитную индукцию – новое явление, которое подробно исследовал и описал в ряде статей. Открытие Фарадея было новым шагом в изучении электромагнитных явлений.

2. Чтобы понять, как Фарадею удалось «превратить магнетизм в электричество», выполним некоторые опыты Фарадея, используя современные приборы. (Демонстрируются и анализируются опыты)

а)Фарадей обнаружил, что если взять две проволочные обмотки (мы возьмём две катушки) и в одной из них менять силу тока, например, замыкая или размыкая цепь первичной катушки, то во вторичной катушке возникает ток, несмотря на то, что катушки изолированы друг от друга. Явление возбуждения электрического тока в замкнутом проводнике с помощью магнитного поля называют электромагнитной индукцией. Возбуждённый таким образом ток назвали индукционным током.

Демонстрирую опыты:

Возникновение индукционного тока в замкнутой катушке при включении и выключении тока во второй катушке;

Возникновение индукционного тока в замкнутой катушке при изменении силы тока с помощью реостата во второй катушке;

Возникновение индукционного тока при перемещении катушек друг относительно друга.

Выполняем опыт с приборами: катушка, соединённая с гальванометром, магнит.

Вывод: во всех рассмотренных случаях индукционный ток возникал при изменении магнитного потока, пронизывающего охваченную проводником площадь катушки.

Выполняем рисунок по проведённым опытам. (Рисунки на доске).

    Закрепление изученного материала и контроль знаний.

Выполняется тестовая работа

    Рефлексия.

У учащихся на столах смайлики (улыбающийся, равнодушный и грустный). Учитель просит поднять в руках тот, который больше соответствовал настроению каждого ученика на уроке.

Сегодня мы с вами познакомились с явлением электромагнитной индукции, которое используется во всех современных генераторах, преобразующих механическую энергию в электрическую. Это явление, открытое М. Фарадеем в 1831 году, сыграло решающую роль в техническом прогрессе современного общества. Оно является физической основой современной электротехники, обеспечивающей промышленность, транспорт, связь, сельское хозяйство, строительство и другие отрасли, быт людей электрической энергией.

Спасибо всем за активную работу на уроке. Оценки.

Домашнее задание

§ 8, 9 №838 (Рымкевич)

Приложение

Задание. Ознакомьтесь с биографией М. Фарадея и заполните таблицу, отражающую вклад учёного в открытие явления электромагнитной индукции. Используйте учебники, энциклопедии, книги, электронные издания, ресурсы Интернета, другие источники.

Фамилия, имя,

годы жизни

Фотография или живописный портрет

Страны, в которых работал

Основной вклад

в науку

Символ открытия

или рисунок установки, на которой работал учёный

Вклад в другие разделы физики

Что более всего поразило в биографии

Класс: 9

Цель: через понятия и формулы магнитного потока и ЭДС индукции подвести учащихся к пониманию правила определения направления индукционного тока.

Оборудование:

  • доска интерактивная SMART
  • программное обеспечение L-микро, раздел «Электродинамика»,
  • блок согласования с компьютером,
  • приставка «Осциллограф»,
  • катушка индуктивности и штатив,
  • полосовые магниты,

ХОД УРОКА

У: Вспомним, что такое магнитный поток.

Д:
1)формула; Ф = В S Cosα;
2) число линий поля через площадку

У: Чтобы стало всем понятно, нарисуйте, как вы поняли, что такое магнитный поток.

Д: Используя инструменты интерактивной доски, изображаем линии поля, проходящие через площадь контура (рис.1, рис 2).

У: Кто может увеличть магнитный поток? Покажите как. (Д: увеличивают число линий магнитной индукции, увеличивают площадь кольца) (рис 3, рис 4)

У: Значит, чтобы уменьшить магнитный поток нужно…
Д: Уменьшить число линий, уменьшить площадь кольца. То есть, для «управления» магнитным потоком можно изменять по величине магнитное поле и площадь контура.
У: Нарисуйте магнитный поток
Д: Его вообще не будет!
– Нет будет! Линии поля рисуюся непрерывно, и охватывают весь магнит. Мы же для удобства рисуем только их часть.
– На лабораторной работе опилки собирались и у северного полюса и у южного. Так что магнитный поток здесь тоже будет.
У: Тогда как переворот магнита повлиял на магнитный поток?
Д: Наверное ни как. Если магнит и площадь взять как и на предыдущем рисунке то по величине ни чег не изменится. Ф = ВS
У: Как же показать, что магнит развернулся?
Д: Поставить знак «–»
У: Расположите кольцо и магнит так, что бы поток через кольцо был равен 0.
Д: рис 5

У: В формуле магнитного потока стоит соsα. Из справочника по математике

Где этот угол на рисунке, между какими двумя направлениями? Поток может быть равен 0, если угол будет 90 o , это же перпендикуляр. А у нас кольцо и магнит параллельны (рис. 6).
Д: У линий поля есть направление, а у площади нет.
У: Вспомните, как задается этот угол по тексту в пособии.
Д: Там нарисован перпендикуляр к рамке
Значит угол между вектором магнитного поля и нормалью. (рис. 7)

У: Проверьте себя – нарисуйте максимальный поток, выносим все возможные варианты на доску. (рис 8)

Д: Второй и третий не подходят. Там поток получается отрицательный.

Д: Ну и, что? Число линий то одинаково, значит и поток одинаковый. В опытах с магнитами, опилкам было все равно к какому полюсу приставать – к северному или южному.
У: Тогда, вообще, зачем нам знать знак потока, угол. Поток все равно понятно, где максимальный?
Д: ?
У: Демонстрация опыта Фарадея с катушкой и магнитом.
Д: В опытах Фарадея! Мы же видели, что направление тока меняется, в зависимости от того, как вносим или выносим магнит.
У: Запишите закон Фарадея математическим выражением.
Д: E = – ,
У: Давайте попытаемся разобраться со знаками в этом законе. Если мы хотим получить «положительное» направление тока, то …
Д: Поток должен убывать. Тогда ∆Ф < 0 и в итоге получиться плюс.
Д: Он может и нарастать, но со знаком минус
У: Нарисуйте, как должен двигаться магнит.

Д: Магнит вставляем в катушку, число линий увеличивается, значит поток нарастает только с противоположным знаком. Можно проверить на числах (рис. 9).
Д: Магнит вынимаем из катушки так, чтобы поток был положительный, а изменение потока будет отрицательно.
У: В эксперименте направление тока в обоих случаях совпадает. Значит, наш анализ формул верен.
У: Воспользуемся современным оборудованием, которое позволяет посмотреть как меняется направление тока не только по направлению, но и по величине со временем.
Даётся информация о возможностях измерительного комплекса «L-микро», краткое объяснение назначения приборов и устройств.

Выполнение демонстраций

Катушку индуктивности закрепляли с помощью штатива. Изменение магнитного потока проводилось с помощью перемещения полосового постоянного магнита относительно катушки индуктивности. Возникающая в катушке индуктивности ЭДС индукции подавалась на вход приставки «Осциллограф», которая через блок согласования передавала изменяющийся во времени электрический сигнал на компьютер и фиксировалась на мониторе. Запуск осциллографа осуществлялся от исследуемого сигнала в режиме развертки «ждущая» при уровне сигнала на порядок меньшим, чем максимальное значение ЭДС индукции. Это позволяло наблюдать ЭДС индукции практически полностью от момента начала изменения магнитного потока.
Сквозь катушку кидаем не маркированный магнит. На экране вычерчивается график зависимости величины ЭДС от времени. Но аналогично будет вести себя и график зависимости тока от времени.
Учащиеся видят, что магнит, пролетая сквозь катушку, вызывает в ней появление индукционного тока. (рис. 10)

У: Зарисуйте схематично график в тетрадь.

Домашнее задание: записать, что происходило с магнитным потоком на трех этапах: магнит подлетает к катушке, движется внутри, вылетает из неё. Зарисовать свой вариант опыта, с указанием полюсов движущегося магнита.