Свойства степени с целым показателем решение. Свойства степеней: формулировки, доказательства, примеры


После того как определена степень числа , логично поговорить про свойства степени . В этой статье мы дадим основные свойства степени числа, при этом затронем все возможные показатели степени. Здесь же мы приведем доказательства всех свойств степени, а также покажем, как применяются эти свойства при решении примеров.

Навигация по странице.

Свойства степеней с натуральными показателями

По определению степени с натуральным показателем степень a n представляет собой произведение n множителей, каждый из которых равен a . Отталкиваясь от этого определения, а также используя свойства умножения действительных чисел , можно получить и обосновать следующие свойства степени с натуральным показателем :

  1. основное свойство степени a m ·a n =a m+n , его обобщение ;
  2. свойство частного степеней с одинаковыми основаниями a m:a n =a m−n ;
  3. свойство степени произведения (a·b) n =a n ·b n , его расширение ;
  4. свойство частного в натуральной степени (a:b) n =a n:b n ;
  5. возведение степени в степень (a m) n =a m·n , его обобщение (((a n 1) n 2) …) n k =a n 1 ·n 2 ·…·n k ;
  6. сравнение степени с нулем:
    • если a>0 , то a n >0 для любого натурального n ;
    • если a=0 , то a n =0 ;
    • если a<0 и показатель степени является четным числом 2·m , то a 2·m >0 , если a<0 и показатель степени есть нечетное число 2·m−1 , то a 2·m−1 <0 ;
  7. если a и b – положительные числа и a
  8. если m и n такие натуральные числа, что m>n , то при 00 справедливо неравенство a m >a n .

Сразу заметим, что все записанные равенства являются тождественными при соблюдении указанных условий, и их правые и левые части можно поменять местами. Например, основное свойство дроби a m ·a n =a m+n при упрощении выражений часто применяется в виде a m+n =a m ·a n .

Теперь рассмотрим каждое из них подробно.

    Начнем со свойства произведения двух степеней с одинаковыми основаниями, которое называют основным свойством степени : для любого действительного числа a и любых натуральных чисел m и n справедливо равенство a m ·a n =a m+n .

    Докажем основное свойство степени. По определению степени с натуральным показателем произведение степеней с одинаковыми основаниями вида a m ·a n можно записать как произведение . В силу свойств умножения полученное выражение можно записать как , а это произведение есть степень числа a с натуральным показателем m+n , то есть, a m+n . На этом доказательство завершено.

    Приведем пример, подтверждающий основное свойство степени. Возьмем степени с одинаковыми основаниями 2 и натуральными степенями 2 и 3 , по основному свойству степени можно записать равенство 2 2 ·2 3 =2 2+3 =2 5 . Проверим его справедливость, для чего вычислим значения выражений 2 2 ·2 3 и 2 5 . Выполняя возведение в степень , имеем 2 2 ·2 3 =(2·2)·(2·2·2)=4·8=32 и 2 5 =2·2·2·2·2=32 , так как получаются равные значения, то равенство 2 2 ·2 3 =2 5 - верное, и оно подтверждает основное свойство степени.

    Основное свойство степени на базе свойств умножения можно обобщить на произведение трех и большего числа степеней с одинаковыми основаниями и натуральными показателями. Так для любого количества k натуральных чисел n 1 , n 2 , …, n k справедливо равенство a n 1 ·a n 2 ·…·a n k =a n 1 +n 2 +…+n k .

    Например, (2,1) 3 ·(2,1) 3 ·(2,1) 4 ·(2,1) 7 = (2,1) 3+3+4+7 =(2,1) 17 .

    Можно переходить к следующему свойству степеней с натуральным показателем – свойству частного степеней с одинаковыми основаниями : для любого отличного от нуля действительного числа a и произвольных натуральных чисел m и n , удовлетворяющих условию m>n , справедливо равенство a m:a n =a m−n .

    Прежде чем привести доказательство этого свойства, обговорим смысл дополнительных условий в формулировке. Условие a≠0 необходимо для того, чтобы избежать деления на нуль, так как 0 n =0 , а при знакомстве с делением мы условились, что на нуль делить нельзя. Условие m>n вводится для того, чтобы мы не выходили за рамки натуральных показателей степени. Действительно, при m>n показатель степени a m−n является натуральным числом, в противном случае он будет либо нулем (что происходит при m−n ), либо отрицательным числом (что происходит при m

    Доказательство. Основное свойство дроби позволяет записать равенство a m−n ·a n =a (m−n)+n =a m . Из полученного равенства a m−n ·a n =a m и из следует, что a m−n является частным степеней a m и a n . Этим доказано свойство частного степеней с одинаковыми основаниями.

    Приведем пример. Возьмем две степени с одинаковыми основаниями π и натуральными показателями 5 и 2 , рассмотренному свойству степени отвечает равенство π 5:π 2 =π 5−3 =π 3 .

    Теперь рассмотрим свойство степени произведения : натуральная степень n произведения двух любых действительных чисел a и b равна произведению степеней a n и b n , то есть, (a·b) n =a n ·b n .

    Действительно, по определению степени с натуральным показателем имеем . Последнее произведение на основании свойств умножения можно переписать как , что равно a n ·b n .

    Приведем пример: .

    Данное свойство распространяется на степень произведения трех и большего количества множителей. То есть, свойство натуральной степени n произведения k множителей записывается как (a 1 ·a 2 ·…·a k) n =a 1 n ·a 2 n ·…·a k n .

    Для наглядности покажем это свойство на примере. Для произведения трех множителей в степени 7 имеем .

    Следующее свойство представляет собой свойство частного в натуральной степени : частное действительных чисел a и b , b≠0 в натуральной степени n равно частному степеней a n и b n , то есть, (a:b) n =a n:b n .

    Доказательство можно провести, используя предыдущее свойство. Так (a:b) n ·b n =((a:b)·b) n =a n , а из равенства (a:b) n ·b n =a n следует, что (a:b) n является частным от деления a n на b n .

    Запишем это свойство на примере конкретных чисел: .

    Теперь озвучим свойство возведения степени в степень : для любого действительного числа a и любых натуральных чисел m и n степень a m в степени n равна степени числа a с показателем m·n , то есть, (a m) n =a m·n .

    Например, (5 2) 3 =5 2·3 =5 6 .

    Доказательством свойства степени в степени является следующая цепочка равенств: .

    Рассмотренное свойство можно распространить на степень в степени в степени и т.д. Например, для любых натуральных чисел p , q , r и s справедливо равенство . Для большей ясности приведем пример с конкретными числами: (((5,2) 3) 2) 5 =(5,2) 3+2+5 =(5,2) 10 .

    Осталось остановиться на свойствах сравнения степеней с натуральным показателем.

    Начнем с доказательства свойства сравнения нуля и степени с натуральным показателем.

    Для начала обоснуем, что a n >0 при любом a>0 .

    Произведение двух положительных чисел является положительным числом, что следует из определения умножения. Этот факт и свойства умножения позволяют утверждать, что результат умножения любого числа положительных чисел также будет положительным числом. А степень числа a с натуральным показателем n по определению является произведением n множителей, каждый из которых равен a . Эти рассуждения позволяют утверждать, что для любого положительного основания a степень a n есть положительное число. В силу доказанного свойства 3 5 >0 , (0,00201) 2 >0 и .

    Достаточно очевидно, что для любого натурального n при a=0 степень a n есть нуль. Действительно, 0 n =0·0·…·0=0 . К примеру, 0 3 =0 и 0 762 =0 .

    Переходим к отрицательным основаниям степени.

    Начнем со случая, когда показатель степени является четным числом, обозначим его как 2·m , где m - натуральное. Тогда . По каждое из произведений вида a·a равно произведению модулей чисел a и a , значит, является положительным числом. Следовательно, положительным будет и произведение и степень a 2·m . Приведем примеры: (−6) 4 >0 , (−2,2) 12 >0 и .

    Наконец, когда основание степени a является отрицательным числом, а показатель степени есть нечетное число 2·m−1 , то . Все произведения a·a являются положительными числами, произведение этих положительных чисел также положительно, а его умножение на оставшееся отрицательное число a дает в итоге отрицательное число. В силу этого свойства (−5) 3 <0 , (−0,003) 17 <0 и .

    Переходим к свойству сравнения степеней с одинаковыми натуральными показателями, которое имеет следующую формулировку: из двух степеней с одинаковыми натуральными показателями n меньше та, основание которой меньше, а больше та, основание которой больше. Докажем его.

    Неравенство a n свойств неравенств справедливо и доказываемое неравенство вида a n .

    Осталось доказать последнее из перечисленных свойств степеней с натуральными показателями. Сформулируем его. Из двух степеней с натуральными показателями и одинаковыми положительными основаниями, меньшими единицы, больше та степень, показатель которой меньше; а из двух степеней с натуральными показателями и одинаковыми основаниями, большими единицы, больше та степень, показатель которой больше. Переходим к доказательству этого свойства.

    Докажем, что при m>n и 00 в силу исходного условия m>n , откуда следует, что при 0

    Осталось доказать вторую часть свойства. Докажем, что при m>n и a>1 справедливо a m >a n . Разность a m −a n после вынесения a n за скобки принимает вид a n ·(a m−n −1) . Это произведение положительно, так как при a>1 степень a n есть положительное число, и разность a m−n −1 есть положительное число, так как m−n>0 в силу начального условия, и при a>1 степень a m−n больше единицы. Следовательно, a m −a n >0 и a m >a n , что и требовалось доказать. Иллюстрацией этого свойства служит неравенство 3 7 >3 2 .

Свойства степеней с целыми показателями

Так как целые положительные числа есть натуральные числа, то все свойства степеней с целыми положительными показателями в точности совпадают со свойствами степеней с натуральными показателями, перечисленными и доказанными в предыдущем пункте.

Степень с целым отрицательным показателем , а также степень с нулевым показателем мы определяли так, чтобы оставались справедливыми все свойства степеней с натуральными показателями, выражаемые равенствами. Поэтому, все эти свойства справедливы и для нулевых показателей степени, и для отрицательных показателей, при этом, конечно, основания степеней отличны от нуля.

Итак, для любых действительных и отличных от нуля чисел a и b , а также любых целых чисел m и n справедливы следующие свойства степеней с целыми показателями :

  1. a m ·a n =a m+n ;
  2. a m:a n =a m−n ;
  3. (a·b) n =a n ·b n ;
  4. (a:b) n =a n:b n ;
  5. (a m) n =a m·n ;
  6. если n – целое положительное число, a и b – положительные числа, причем ab −n ;
  7. если m и n – целые числа, причем m>n , то при 01 выполняется неравенство a m >a n .

При a=0 степени a m и a n имеют смысл лишь когда и m , и n положительные целые числа, то есть, натуральные числа. Таким образом, только что записанные свойства также справедливы для случаев, когда a=0 , а числа m и n – целые положительные.

Доказать каждое из этих свойств не составляет труда, для этого достаточно использовать определения степени с натуральным и целым показателем, а также свойства действий с действительными числами. Для примера докажем, что свойство степени в степени выполняется как для целых положительных чисел, так и для целых неположительных чисел. Для этого нужно показать, что если p есть нуль или натуральное число и q есть нуль или натуральное число, то справедливы равенства (a p) q =a p·q , (a −p) q =a (−p)·q , (a p) −q =a p·(−q) и (a −p) −q =a (−p)·(−q) . Сделаем это.

Для положительных p и q равенство (a p) q =a p·q доказано в предыдущем пункте. Если p=0 , то имеем (a 0) q =1 q =1 и a 0·q =a 0 =1 , откуда (a 0) q =a 0·q . Аналогично, если q=0 , то (a p) 0 =1 и a p·0 =a 0 =1 , откуда (a p) 0 =a p·0 . Если же и p=0 и q=0 , то (a 0) 0 =1 0 =1 и a 0·0 =a 0 =1 , откуда (a 0) 0 =a 0·0 .

Теперь докажем, что (a −p) q =a (−p)·q . По определению степени с целым отрицательным показателем , тогда . По свойству частного в степени имеем . Так как 1 p =1·1·…·1=1 и , то . Последнее выражение по определению является степенью вида a −(p·q) , которую в силу правил умножения можно записать как a (−p)·q .

Аналогично .

И .

По такому же принципу можно доказать все остальные свойства степени с целым показателем, записанные в виде равенств.

В предпоследнем из записанных свойств стоит остановиться на доказательстве неравенства a −n >b −n , которое справедливо для любого целого отрицательного −n и любых положительных a и b , для которых выполняется условие a. Так как по условию a0 . Произведение a n ·b n тоже положительно как произведение положительных чисел a n и b n . Тогда полученная дробь положительна как частное положительных чисел b n −a n и a n ·b n . Следовательно, откуда a −n >b −n , что и требовалось доказать.

Последнее свойство степеней с целыми показателями доказывается так же, как аналогичное свойство степеней с натуральными показателями.

Свойства степеней с рациональными показателями

Степень с дробным показателем мы определяли, распространяя на нее свойства степени с целым показателем. Иными словами, степени с дробными показателями обладают теми же свойствами, что и степени с целыми показателями. А именно:

Доказательство свойств степеней с дробными показателями базируется на определении степени с дробным показателем, на и на свойствах степени с целым показателем. Приведем доказательства.

По определению степени с дробным показателем и , тогда . Свойства арифметического корня позволяют нам записать следующие равенства . Дальше, используя свойство степени с целым показателем, получаем , откуда по определению степени с дробным показателем имеем , а показатель полученной степени можно преобразовать так: . На этом доказательство завершено.

Абсолютно аналогично доказывается второе свойство степеней с дробными показателями:

По схожим принципам доказываются и остальные равенства:

Переходим к доказательству следующего свойства. Докажем, что для любых положительных a и b , a b p . Запишем рациональное число p как m/n , где m – целое число, а n – натуральное. Условиям p<0 и p>0 в этом случае будут эквивалентны условия m<0 и m>0 соответственно. При m>0 и a

Аналогично, при m<0 имеем a m >b m , откуда , то есть, и a p >b p .

Осталось доказать последнее из перечисленных свойств. Докажем, что для рациональных чисел p и q , p>q при 00 – неравенство a p >a q . Мы всегда можем привести к общему знаменателю рациональные числа p и q , пусть при этом мы получим обыкновенные дроби и , где m 1 и m 2 – целые числа, а n - натуральное. При этом условию p>q будет соответствовать условие m 1 >m 2 , что следует из . Тогда по свойству сравнения степеней с одинаковыми основаниями и натуральными показателями при 01 – неравенство a m 1 >a m 2 . Эти неравенства по свойствам корней можно переписать соответственно как и . А определение степени с рациональным показателем позволяет перейти к неравенствам и соответственно. Отсюда делаем окончательный вывод: при p>q и 00 – неравенство a p >a q .

Свойства степеней с иррациональными показателями

Из того, как определяется степень с иррациональным показателем , можно заключить, что она обладает всеми свойствами степеней с рациональными показателями. Так для любых a>0 , b>0 и иррациональных чисел p и q справедливы следующие свойства степеней с иррациональными показателями :

  1. a p ·a q =a p+q ;
  2. a p:a q =a p−q ;
  3. (a·b) p =a p ·b p ;
  4. (a:b) p =a p:b p ;
  5. (a p) q =a p·q ;
  6. для любых положительных чисел a и b , a0 справедливо неравенство a p b p ;
  7. для иррациональных чисел p и q , p>q при 00 – неравенство a p >a q .

Отсюда можно сделать вывод, что степени с любыми действительными показателями p и q при a>0 обладают этими же свойствами.

Список литературы.

  • Виленкин Н.Я., Жохов В.И., Чесноков А.С., Шварцбурд С.И. МатематикаЖ учебник для 5 кл. общеобразовательных учреждений.
  • Макарычев Ю.Н., Миндюк Н.Г., Нешков К.И., Суворова С.Б. Алгебра: учебник для 7 кл. общеобразовательных учреждений.
  • Макарычев Ю.Н., Миндюк Н.Г., Нешков К.И., Суворова С.Б. Алгебра: учебник для 8 кл. общеобразовательных учреждений.
  • Макарычев Ю.Н., Миндюк Н.Г., Нешков К.И., Суворова С.Б. Алгебра: учебник для 9 кл. общеобразовательных учреждений.
  • Колмогоров А.Н., Абрамов А.М., Дудницын Ю.П. и др. Алгебра и начала анализа: Учебник для 10 - 11 классов общеобразовательных учреждений.
  • Гусев В.А., Мордкович А.Г. Математика (пособие для поступающих в техникумы).

Степень с натуральным показателем

Произведение нескольких одинаковых множителей можно записать в виде выражения, называемого степенью .
Например, 4 . 4 . 4 . 4 . 4 . 4 = 4 6
Повторяющийся множитель называют основанием степени , а число повторяющихся множителей – показателем степени . Так, в выражении 4 6 число 4 – основание степени, а число 6 – показатель степени.

Определение . Степенью числа а с натуральным показателем п, большим 1, называется произведение п множителей, каждый из которых равен а.

Определение . Степень числа а, не равного нулю, с нулевым показателем равна единице. Степенью числа а с показателем 1 называется само число. Нахождение значения степени называют возведением в степень.

Примеры: 7 5 = 7 . 7 . 7 . 7 . 7. = 16 807, (– 8) 3 = (– 8) . (– 8) . (8) = – 512 .

Степень с целым отрицательным показателем

Определение. Если a =/= 0 и n – целое отрицательное число, то .

Примеры :

(–3) –4 = = ; = = – 8

Свойства степени с целым показателем

Свойства степени с натуральным показателем справедливы и для степени с любым целым показателем (нужно только предполагать, что основание степени не равно нулю).

1 свойство :

При умножении степеней с одинаковыми основаниями основание оставляют тем же, а показатели степеней складывают.

Пример:

2 свойство:

При делении степеней с одинаковыми основаниями основание оставляют тем же, а из показателя степени делимого вычитают показатель степени делителя.

Пример: = =

3 свойство :

При возведении степени в степень основание оставляют прежним, а показатели перемножают.

Пример:

4 свойство :

При возведении в степень произведения возводят в эту степень каждый множитель и результаты перемножают.

Пример: = 2 –2 . (a 3) –2 (b –5) –2 = a –6 b 10 .

5 свойство : , где в =/= 0.

Пример:

Стандартный вид числа

В науке и технике встречаются как очень большие, так и очень малые положительные числа. Например, объем Земли равен 1 083 000 000 000 км 3 , а диаметр молекулы воды – 0,0000000003 м. В обычном десятичном виде такие числа неудобно читать и записывать, а также выполнять над ними какие-либо действия, поэтому полезно их записывать в стандартном виде.

Определение. Стандартным видим числа a называют его запись в виде a . 10 n , где 1 < a < 10 и n – целое число. Число n называется порядком числа a .

Например, порядок числа, выражающего объем Земли в кубических километрах, равен 12, а порядок выражающего диаметр молекулы воды в метрах, равен – 10.

Пример 1 . Представить в стандартном виде число р = 42 350 000.
В этом числе поставим запятую так, чтобы в целой части оказалась одна цифра. В результате получим 4,2350000 = 4,235. Отделив запятой 7 цифр справа, мы уменьшили число р в 10 7 раз, поэтому р больше числа 4,235 в 10 7 раз. Значит, р = 42 350 000 = 4,235 . 10 7 .

Пример 2. Представить в стандартном виде число р = 0,00000257.
В этом числе переставим запятую так, чтобы в целой части оказалась одна отличная от нуля цифра. В результате получится 2,57. Переставив запятую на 6 знаков вправо, мы увеличили число р в 10 6 раз, поэтому число р меньше числа 2,57 в 10 6 раз. Отсюда р = 2,57: 10 6 = 2,57 , т.е. 0,00000257 = 2,57 . 10 –6 .

Тесты составлены в программе M Excel. Для работы с ними необходимо наличие на ПК прикладной программы M Excel. Последовательность работы:

1. Запустить нужный тест.

2. В поле «нумерации листов» выбрать нужный вариант.

3. Для выбора ответа необходимо:

а) выделить мышкой область, окрашенную голубым цветом;
б) на экране появится указатель ответов
в) после нажатия напоявится «раскрывающийся список»;
г) среди предложенных ответов выбрать свой ответ;
д) перейти к следующему заданию теста.

3. При окончании работы над тестом на экране ПК будет указано количество верных ответов.

4. Для вывода оценки на экран необходимо обратиться к гиперссылке «Оценка».

Муниципальное казенное образовательное учреждение

«Теляковская средняя общеобразовательная школа»

Ясногорского района Тульской области

Урок по теме

«Свойства степени с целым показателем»

8 класс

Учитель математики

первой квалификационной категории

Кучабо Ю.Б.

2015 г.

Свойства степени с целым показателем

Тип урока: урок изучения и первичного закрепления новых знаний.

Цель: организовать деятельность обучающихся по изучению свойств степени с целым показателем и применению их при вычислениях и преобразованиях.

Задачи: - формировать потребность приобретения новых знаний, развивать

познавательные процессы, мышление, память, воображение, самостоятельность;

создать ситуацию успеха для каждого с помощью разноуровневой

самостоятельной работы;

Развивать навыки самоконтроля и самооценки;

Воспитывать уважение друг к другу, уверенность в себе, честность,

корректировать самооценку; развивать математическую речь.

Структура урока:

1) Мотивационная беседа, самоопределение к деятельности.

2) Актуализация знаний и фиксация затруднений в деятельности.

3) Постановка учебной задачи. Практическая работа с доказательством свойств степени с целым показателем.

4) Первичное закрепление. Эстафета.

5) Диагностика усвоения. (Разноуровневая самостоятельная работа).

6) Домашнее задание.

7) Итог. Рефлексия

Ход урока:

    Мотивационная беседа. Самоопределение к деятельности. (2 минуты)

Здравствуйте. Сегодня на уроке мы изучаем тему «Свойства степени с целым показателем». Подумайте, что нужно знать для ее изучения? Что необходимо вспомнить, повторить, к чему мы должны прийти в конце урока, каких целей достичь? Правильно. Итак, цель нашего урока: изучить свойства степени с целым показателем и научиться применять эти свойства. Для этого мы должны выполнить следующие задачи: вы вспомните свойства степени с натуральным показателем и докажите справедливость этих свойств для степени с целым показателем. Вы призовете на помощь свое воображение, внимание, сообразительность и станете еще умнее. В ходе урока вы ведете листки «Самоконтроля» и, как обычно, отмечаете степень своего участия в общей деятельности. На прошлом уроке мы познакомились с определением степени с целым показателем. Давайте вспомним теорию. Ответьте на вопросы:

1). Сформулируйте определение степени числа с натуральным показателем.

Определение. Степенью числа а с натуральным показателем п, большим 1, называется произведение п множителей, каждый из которых равен а.

2). Каким числом (положительным или отрицательным) является:

Степень положительного числа? (положительным)

Степень отрицательного числа с четным показателем? (положительным)

Степень отрицательного числа с нечетным показателем? (отрицательным)

3). Сформулируйте определение степени с целым отрицательным показателем. Определение. Если a 0 и n – целое отрицательное число, то .

    Актуализация знаний и фиксация затруднений в деятельности. (5 минут)

Теперь вспомните, пожалуйста, свойства степени с натуральным показателем. Чтобы вы быстрее вспомнили, смотрите на доску и работайте по подсказкам.

1) Сформулируйте правило умножения степеней с одинаковыми основаниями.

1 свойство : (на доске)

При умножении степеней с одинаковыми основаниями основание оставляют тем же, а показатели степеней складывают.

2) Сформулируйте правило деления степеней с одинаковыми основаниями.

2 свойство: (на доске)

При делении степеней с одинаковыми основаниями основание оставляют тем же, а из показателя степени делимого вычитают показатель степени делителя.

3) Сформулируйте правило возведения степени в степень.

3 свойство : (на доске)

При возведении степени в степень основание оставляют прежним, а показатели перемножают.

4) Сформулируйте правило возведения в степень произведения.

4 свойство : (на доске)

При возведении в степень произведения возводят в эту степень каждый множитель и результаты перемножают.

5) Сформулируйте правило возведения в степень дроби.

5 свойство : , где в 0. (на доске)

При возведении дроби в степень возводят в эту степень отдельно числитель и отдельно знаменатель и записывают в виде дроби.

6) Чему равна степень с нулевым показателем?

6 свойство: а 0 =1, где а ≠ 0. (на доске)

Степень числа а, не равного нулю, с нулевым показателем равна единице.

Вычислительные задания.

1. Вычислить: -3+2; -7-3; -8-(-4); 3∙(-6); -2∙(-8)

2. Упростить выражения:

а) 3 2 · 3; б) 2 10 : 2 6 ; в) (2 2 ) 3 ; г) (5а 2 ) 2

Не забывайте оценивать свою деятельность в листах самооценки.

3) Постановка учебной задачи. Практическая работа с доказательством свойств степени с целым показателем (5 минут)

Объяснение нового материала.

Мы повторили понятие степени с натуральным показателем, а теперь давайте докажем что рассмотренные свойства справедливы и для степени с любым целым показателем, нужно только предполагать что основание степени не равно нулю.

Итак, для любого ≠0 и любых целых m и n

= (1)

: = (2)

= (3)

И для любых ≠0 и ≠0 и целого m

(4)

(5)

Эти свойства можно доказать исходя из определения степени с отрицательным показателем, и свойства степени с натуральным показателем. Докажем справедливость свойства (1) (основного свойства степени).

Где ≠0 , k и p - натуральные числа.

Сейчас проведем небольшую практическую работу. Доказательство свойства (4) проведите сами, заменяя степени дробями, воспользовавшись определением степени с целым отрицательным показателем. Затем проверьте правильность практической работы, сверившись с доской, и оцените свою деятельность.

    Первичное закрепление. (10 минут)

а) Из свойств степени вытекает, что действия над степенями с целым показателем выполняются по тем же правилам, что и действия над степенями с натуральным показателем.

Рассмотрим примеры. Решите их сами, сверьтесь с доской, исправьте ошибки (если они есть) и оцените свою деятельность.

1). 5а -15 · 0,4а 23

2). 7,5 с 7 : 3 с -5

3). (3а 2 с -3 ) -2

4). 16 2 : (2 3 ) 2

Если у многих учащихся есть ошибки, учитель разъясняет материал еще раз на других аналогичных примерах (возможно, из учебника).

б) Эстафета. Обучающиеся выполняют первое задание, его ответ – одновременно номер следующего примера, и т.д. Ответ последнего задания сообщается учителю. Затем следует проверка.

1). ·

2). ·

3). : 16

4). ·

5). :

Решение:

1). · = = 5

5). : = = 2

2). · = = 3

3). : 16 = = 4

4). · = = =1

Физ. минутка.

Если вы устали, чувствуете упадок сил, не выспались надо подзарядиться энергией. Сядьте прямо, не горбитесь, сомкните вместе колени и ступни ног, замкните руки в замок, закройте глаза и дышите носом глубоко и равномерно. Сосредоточьтесь на звуке биения своего сердца – ощутите эту вибрацию во всем теле. Вскоре вы почувствуете, что ритм вашего дыхания почти совпадает с ритмом биения сердца. Наслаждайтесь этой вибрацией, дышите глубоко и спокойно, слушайте мелодию, которую поют ваше сердце и дыхание. Теперь откройте глаза, встаньте, распрямите плечи и глубоко вдохните. Чувствуете? Все тело налилось такой силой, что сегодня никакие препятствия не смогут стать помехой в ваших делах! Вы полны энергии и здоровья!

5) Диагностика усвоения. (15 минут)

Помним важное правило обучения. Люди сохраняют в памяти:

    10% того, что читали;

    20% того, что слышали;

    30%, того, что видели;

    50% того, что слышали и видели;

    70% того, что слышали, видели и обсуждали;

    80% того, что говорили сами;

    90% того, что делали сами.

Поэтому, используя изученные свойства степени, выполняем самостоятельную работу. Работаем по вариантам с последующей взаимопроверкой и самопроверкой. Юля выполняет задания I варианта, затем закрывает свою тетрадь и смотрит на решение этих заданий на доске. Запоминает правильное решение, открывает тетрадь, исправляет свои возможные ошибки и оценивает свою деятельность. (Правильное решение на доске уже закрыто). Кристина, Сережа и Валера решают II вариант. Затем обмениваются тетрадями, проверяют работы друг друга и выставляют оценки карандашом в тетради и ручкой в листки самоконтроля. Кристина проверяет работу Валеры, Валера – Сережи, Сережа – Кристины.

I вариант II вариант

1 Вычислите: № 1 Вычислите:

а) 5 -15 · 5 12 а) 3 -4 · 3 6

б) 9 -5 · 27 3 б) 10 8 · 10 -5

в) 10 0 : 10 -5 в) 4 -8 : 4 -9

г) 8 -2 : 4 -4 г) 6 -3 : 6 -3

д) (3 2 ) -3 · 27 2 д) (5 2 ) -2 · 5 3

2 Упростите выражение: № 2 Упростите выражение:

а) (0,5х -4 у -3 ) 2 · 4 х -2 у 3 а) 1,5 ас -3 · 4 а -2 с

б) (5а 3 с 2 ) -2 · 10 а 5 с -3 б) 0,6 х -2 у 4 · 0,5 х 3 у -2

в) (х -7 у 2 ) -2 · (х 2 у -3 ) -3 в) (0,5х -4 у -3 ) 2 · 4 х -2 у 3

г) г)

д) д)

6) Домашнее задание . (4 минуты)

Сдайте, пожалуйста, самостоятельную работу и листки самоконтроля. Откройте учебники на стр. 118. Еще раз прочитайте свойства степени с целым показателем и примеры их применения в тексте пункта 40. Теперь запишите домашнее задание: п. 40, № 986, № 999. Посмотрите на № 986. Как вы будете его выполнять? Какие свойства степени примените? А при выполнении № 999? Внимательно посмотрите, если что-то непонятно, задавайте вопросы.

7) Рефлексия. Итог урока. (4 минуты)

Подумайте, что нового вы узнали на уроке? Достигли ли цели урока? Каковы причины затруднений и ошибок? Какую цель поставим себе на следующий урок?

Всем спасибо за работу на уроке, вы сегодня молодцы. Урок окончен, до свидания.

Необходимый материал к уроку:

презентация,

карточки с заданиями для самостоятельной работы,

листки самоконтроля.

Пример листка самоконтроля.

Инструкция: в ходе урока отмечайте степень вашего участия в деятельности по шкале 1) – списал, но не понял (слушал, но не отвечал) – 2 балла, 2) – списал и разобрался – 3 балла, 3) – решал сам, но ошибся (ответил на устный вопрос) – 4 балла, 4) – решил сам без ошибок – 5 баллов. Самостоятельная работа оценивается так: из 10 заданий правильно выполнены 9 или 10 – отметка 5, 7 или 8 – 4, 5 или 6 – 3, меньше 5 – 2 балла.

Виды деятельности

Баллы

Ответы на устные вопросы

Практическая работа

Закрепление

Самостоятельная работа

Итог урока

Решение (для презентации)

Вычислительные задания.

    Вычислить: -3+2; -7-3; -8-(-4); 3∙(-6); -2∙(-8).

2. Упростить выражения:

а) 3 2 · 3; б) 2 10 : 2 6 ; в) (2 2 ) 3 ; г) (5а 2 ) 2

Решение: а) 3 2 · 3 = 3 3 =27; б) 2 10 : 2 6 = 2 4 = 16 ; в) (2 2 ) 3 = 2 6 = 64 ; г) (5а 2 ) 2 = 5 2 а 2·2 =25а 4

Первичное закрепление :

1). 5а -15 · 0,4а 23 = 2а -15+23 = 2а 8

2). 7,5с 7 : 3с -5 = 2,5с 7-(-5) =2,5 с 12

3). (3а 2 с -3 ) -2 = 3 -2 · (а 2 ) -2 · (с -3 ) -2 = а -4 с 6

4). 16 2 : (2 3 ) 2 = (2 4 ) 2 : 2 3·2 = 2 8 : 2 6 = 2 2 = 4

Эстафета:

1). ·

2). ·

3). : 16

4). ·

5). :

Решение:

1). · = = 5

5). : = = 2

2). · = = 3

3). : 16 = = 4

4). · = = =1

Самостоятельная работа:

I вариант

1 Вычислите:

а) 5 -15 · 5 12 = 5 -3 =

б) 9 -5 · 27 3 = (3 2 ) -5 · (3 3 ) 3 = 3 -10 · 3 9 =3 -1 =

Основная цель

Ознакомить учащихся со свойствами степеней с натуральными показателями и научить выполнять действия со степенями.

Тема “ Степень и её свойства ” включает три вопроса:

  • Определение степени с натуральным показателем.
  • Умножение и деление степеней.
  • Возведение в степень произведения и степени.

Контрольные вопросы

  1. Сформулируйте определение степени с натуральным показателем, большим 1. Приведите пример.
  2. Сформулируйте определение степени с показателем 1. Приведите пример.
  3. Каков порядок выполнения действий при вычислении значения выражения, содержащего степени?
  4. Сформулируйте основное свойство степени. Приведите пример.
  5. Сформулируйте правило умножения степеней с одинаковыми основаниями. Приведите пример.
  6. Сформулируйте правило деления степеней с одинаковыми основаниями. Приведите пример.
  7. Сформулируйте правило возведения в степень произведения. Приведите пример. Докажите тождество (ab) n = a n b n .
  8. Сформулируйте правило возведения степени в степень. Приведите пример. Докажите тождество (а m) n = а m n .

Определение степени.

Степенью числа a с натуральным показателем n , большим 1, называется произведение n множителей, каждый из которых равен а . Степенью числа а с показателем 1 называется само число а .

Степень с основанием а и показателем n записывается так: а n . Читается “ а в степени n ”; “ n- я степень числа а ”.

По определению степени:

а 4 = а а а а

. . . . . . . . . . . .

Нахождение значения степени называют возведением в степень .

1. Примеры возведения в степень:

3 3 = 3 3 3 = 27

0 4 = 0 0 0 0 = 0

(-5) 3 = (-5) (-5) (-5) = -125

25 ; 0,09 ;

25 = 5 2 ; 0,09 = (0,3) 2 ; .

27 ; 0,001 ; 8 .

27 = 3 3 ; 0,001 = (0,1) 3 ; 8 = 2 3 .

4. Найти значения выражений:

а) 3 10 3 = 3 10 10 10 = 3 1000 = 3000

б) -2 4 + (-3) 2 = 7
2 4 = 16
(-3) 2 = 9
-16 + 9 = 7

Вариант 1

а) 0,3 0,3 0,3

в) b b b b b b b

г) (-х) (-х) (-х) (-х)

д) (ab) (ab) (ab)

2. Представьте в виде квадрата числа:

3. Представьте в виде куба числа:

4. Найти значения выражений:

в) -1 4 + (-2) 3

г) -4 3 + (-3) 2

д) 100 - 5 2 4

Умножение степеней.

Для любого числа а и произвольных чисел m и n выполняется:

a m a n = a m + n .

Доказательство:

Правило : При умножении степеней с одинаковыми основаниями основания оставляют прежним, а показатели степеней складывают.

a m a n a k = a m + n a k = a (m + n) + k = a m + n + k

а) х 5 х 4 = х 5 + 4 = х 9

б) y y 6 = y 1 y 6 = y 1 + 6 = y 7

в) b 2 b 5 b 4 = b 2 + 5 + 4 = b 11

г) 3 4 9 = 3 4 3 2 = 3 6

д) 0,01 0,1 3 = 0,1 2 0,1 3 = 0,1 5

а) 2 3 2 = 2 4 = 16

б) 3 2 3 5 = 3 7 = 2187

Вариант 1

1. Представить в виде степени:

а) х 3 х 4 е) х 2 х 3 х 4

б) а 6 а 2 ж) 3 3 9

в) у 4 у з) 7 4 49

г) а а 8 и) 16 2 7

д) 2 3 2 4 к) 0,3 3 0,09

2. Представить в виде степени и найти значение по таблице:

а) 2 2 2 3 в) 8 2 5

б) 3 4 3 2 г) 27 243

Деление степеней.

Для любого числа а0 и произвольных натуральных чисел m и n, таких, что m>n выполняется:

a m: a n = a m - n

Доказательство:

a m - n a n = a (m - n) + n = a m - n + n = a m

по определению частного:

a m: a n = a m - n .

Правило : При делении степеней с одинаковыми основаниями основание оставляют прежним, а из показателя степени делимого вычитают показатель степени делителя.

Определение: Степень числа а, не равного нулю, с нулевым показателем равна единице :

т.к. а n: a n = 1 при а0 .

а) х 4:х 2 = х 4 - 2 = х 2

б) у 8:у 3 = у 8 - 3 = у 5

в) а 7:а = а 7:а 1 = а 7 - 1 = а 6

г) с 5:с 0 = с 5:1 = с 5

а) 5 7:5 5 = 5 2 = 25

б) 10 20:10 17 = 10 3 = 1000

в)

г)

д)

Вариант 1

1. Представьте в виде степени частное:

2. Найдите значения выражений:

Возведение в степень произведения.

Для любых а и b и произвольного натурального числа n:

(ab) n = a n b n

Доказательство:

По определению степени

(ab) n =

Сгруппировав отдельно множители а и множители b, получим:

=

Доказанное свойство степени произведения распространяется на степень произведения трех и более множителей.

Например:

(a b c) n = a n b n c n ;

(a b c d) n = a n b n c n d n .

Правило : При возведении в степень произведения возводят в эту степень каждый множитель и результат перемножают.

1. Возвести в степень:

а) (a b) 4 = a 4 b 4

б) (2 х у) 3 =2 3 х 3 у 3 = 8 х 3 у 3

в) (3 а) 4 = 3 4 а 4 = 81 а 4

г) (-5 у) 3 = (-5) 3 у 3 = -125 у 3

д) (-0,2 х у) 2 = (-0,2) 2 х 2 у 2 = 0,04 х 2 у 2

е) (-3 a b c) 4 = (-3) 4 a 4 b 4 c 4 = 81 a 4 b 4 c 4

2. Найти значение выражения:

а) (2 10) 4 = 2 4 10 4 = 16 1000 = 16000

б) (3 5 20) 2 = 3 2 100 2 = 9 10000= 90000

в) 2 4 5 4 = (2 5) 4 = 10 4 = 10000

г) 0,25 11 4 11 = (0,25 4) 11 = 1 11 = 1

д)

Вариант 1

1. Возвести в степень:

б) (2 а с) 4

д) (-0,1 х у) 3

2. Найти значение выражения:

б) (5 7 20) 2

Возведение в степень степени.

Для любого числа а и произвольных натуральных чисел m и n:

(а m) n = а m n

Доказательство:

По определению степени

(а m) n =

Правило: При возведении степени в степень основание оставляют тем же, а показатели перемножают .

1. Возвести в степень:

(а 3) 2 = а 6 (х 5) 4 = х 20

(у 5) 2 = у 10 (b 3) 3 = b 9

2. Упростите выражения:

а) а 3 (а 2) 5 = а 3 а 10 = а 13

б) (b 3) 2 b 7 = b 6 b 7 = b 13

в) (х 3) 2 (х 2) 4 = х 6 х 8 = х 14

г) (у у 7) 3 = (у 8) 3 = у 24

а)

б)

Вариант 1

1. Возвести в степень:

а) (а 4) 2 б) (х 4) 5

в) (у 3) 2 г) (b 4) 4

2. Упростите выражения:

а) а 4 (а 3) 2

б) (b 4) 3 b 5+

в) (х 2) 4 (х 4) 3

г) (у у 9) 2

3. Найдите значение выражений:

Приложение

Определение степени.

Вариант 2

1ю Запишите произведение в виде степени:

а) 0,4 0,4 0,4

в) а а а а а а а а

г) (-у) (-у) (-у) (-у)

д) (bс) (bс) (bс)

2. Представьте в виде квадрата числа:

3. Представьте в виде куба числа:

4. Найти значения выражений:

в) -1 3 + (-2) 4

г) -6 2 + (-3) 2

д) 4 5 2 – 100

Вариант 3

1. Запишите произведение в виде степени:

а) 0,5 0,5 0,5

в) с с с с с с с с с

г) (-х) (-х) (-х) (-х)

д) (ab) (ab) (ab)

2. Представьте в виде квадрата числа: 100 ; 0,49 ; .

3. Представьте в виде куба числа:

4. Найти значения выражений:

в) -1 5 + (-3) 2

г) -5 3 + (-4) 2

д) 5 4 2 - 100

Вариант 4

1. Запишите произведение в виде степени:

а) 0,7 0,7 0,7

в) х х х х х х

г) (-а) (-а) (-а)

д) (bс) (bс) (bс) (bc)

2. Представьте в виде квадрата числа:

3. Представьте в виде куба числа:

4. Найти значения выражений:

в) -1 4 + (-3) 3

г) -3 4 + (-5) 2

д) 100 - 3 2 5

Умножение степеней.

Вариант 2

1. Представить в виде степени:

а) х 4 x 5 е) х 3 х 4 х 5

б) а 7 а 3 ж) 2 3 4

в) у 5 у з) 4 3 16

г) а а 7 и) 4 2 5

д) 2 2 2 5 к) 0,2 3 0,04

2. Представить в виде степени и найти значение по таблице:

а) 3 2 3 3 в) 16 2 3

б) 2 4 2 5 г) 9 81

Вариант 3

1. Представить в виде степени:

а) а 3 а 5 е) у 2 у 4 у 6

б) х 4 х 7 ж) 3 5 9

в) b 6 b з) 5 3 25

г) у у 8 и) 49 7 4

д) 2 3 2 6 к) 0,3 4 0,27

2. Представить в виде степени и найти значение по таблице:

а) 3 3 3 4 в) 27 3 4

б) 2 4 2 6 г) 16 64

Вариант 4

1. Представить в виде степени:

а) а 6 а 2 е) х 4 х х 6

б) х 7 х 8 ж) 3 4 27

в) у 6 у з) 4 3 16

г) х х 10 и) 36 6 3

д) 2 4 2 5 к) 0,2 2 0,008

2. Представить в виде степени и найти значение по таблице:

а) 2 6 2 3 в) 64 2 4

б) 3 5 3 2 г) 81 27

Деление степеней.

Вариант 2

1. Представьте в виде степени частное:

2. Найдите значения выражений.

a n и определяемое по правилу:

Например:

Определение . Степенью числа a (a ≠ 0) с целым показателем m называется число, записываемое как a m и определяемое по правилу:

Выражения «нуль в нулевой степени» и «нуль в отрицательной степени» не определены.

Если основанием степени является обыкновенная дробь, то удобно использовать правило, которое следует непосредственно из определения:

Например:

.

Свойства степени с целым показателем

m, n - целые числа, p ≠ 0

Примеры заданий с комментариями

Задание 1

Какое из следующих выражений равно дроби: ?

Чтобы ответить на данный вопрос, воспользуемся свойством степени с целым показателем. При делении показатели степеней с одинаковым основанием вычитаются. Таким образом, если 8 представить как 2 3 , получим, что:

.

Задание 2

Микропроцессор за секунду совершает 250 тыс. операций. Как эта величина записывается в стандартном виде?

Воспользуемся правилом записи чисел с использованием степеней числа 10. Если положительное число a представлено в виде a 1 ∙ 10 n , где 1 ≤ a 1 < 10, n - целое число, то говорят, что число a записано в стандартном виде.

В нашем примере, чтобы число 250000 представить в стандартном виде, необходимо, чтобы запятая стояла после числа 2, что будет удовлетворять условию, что 1 ≤ a 1 < 10. Тогда получим число 2,5. И, чтобы данное число соответствовало исходному, его необходимо умножить на 10 5 . То есть если запятую перенести на пять знаков вправо (так как степень положительная, поэтому вправо), получим 250000.

Ответ : 2,5 ∙ 10 5 .

Задание 3

Запишите числа в стандартном виде:

    Чтобы представить число 0,0069 в стандартном виде, необходимо записать его в виде a 1 ∙ 10 n , где 1 ≤ a 1 ≤ 10. Перенесем запятую в числе 0,0069 на три знака вправо, только тогда получим 1 ≤ 6,9 ≤ 10. После переноса запятой получим число 6,9, которое больше числа 0,0069 в 10 3 раз. Чтобы число не изменилось, результат нужно умножить на 10 -3 . Получаем: 0,0069 = 6,9 ∙ 10 -3 .

    Чтобы представить число 98000 в стандартном виде, необходимо записать его в виде a 1 ∙ 10 n , где 1 ≤ a 1 ≤ 10. Перенесем запятую в числе 98000 на четыре знака влево, только тогда получим 1 ≤ 9,8 ≤ 10 . После переноса запятой получим число 9,8, которое меньше числа 98000 в 10 -4 раз. Чтобы число не изменилось, результат нужно умножить на 10 4 . Получаем: 98000 = 9,8 ∙ 10 4 .

Примечание .

Если преобразование числа происходит с переносом запятой слева направо, то осуществляется действие деление на 10 n . Записываем как 0,0069 = 6,9 ∙ 10 -3 , выражение при преобразовании равняется .

Если преобразование числа происходит с переносом запятой справа налево, то осуществляется произведение на 10 n (записываем как 98000 = 9,8 ∙ 10 4 , выражение при преобразовании равняется 9,8 ∙ 10000 = 98000).

Задание 4

Из чисел 1,130 ∙ 10 6 ; 5,713 ∙ 10 5 ; 4,011 ∙ 10 6 ; 2,315 ∙ 10 5 выберите наибольшее.

Данное задание предполагает оценку значений сначала по степени - наибольшая степень шестая. Таких значений два: первое и третье. Затем оцениваем первый множитель: 4,011 больше 1,130. Поэтому третье значение наибольшее.