Как сделать плазморез из инвертора своими руками. Как сделать плазменный сварочный аппарат своими руками? Плазморез из микроволновки

Современные инверторные сварочные аппараты покрывают большинство потребностей для получения неразъемных соединений металлических заготовок. Но в ряде случаев куда более удобным будет аппарат несколько иного типа, в котором основную роль играет не электрическая дуга, а поток ионизированного газа, то есть плазменный сварочный аппарат. Приобретать его для периодического использования не слишком рентабельно. Можно сделать такой сварочный аппарат своими руками.

Оборудование и компоненты

Изготовить микроплазменный сварочный аппарат проще всего на основе уже имеющегося инверторного сварочного аппарата. Для выполнения такой модернизации вам понадобятся следующие компоненты:

  • любой инверторный сварочный аппарат для TIG сварки со встроенным осциллятором или без него;
  • сопло с вольфрамовым электродом от TIG-сварочника;
  • аргоновый баллон с редуктором;
  • небольшой кусочек прутка из тантала или молибдена диаметром и длиной до 20 мм;
  • фторопластовая трубка;
  • медные трубки;
  • небольшие кусочки листовой меди толщиной 1-2 мм;
  • электронный балласт;
  • резиновые шланги;
  • гермоввод;
  • хомуты;
  • проводка;
  • клеммы;
  • автомобильный бачок стеклоочистителя с электронасосом;
  • выпрямительный блок питания электронасоса стеклоочистителя.

Работы по доводке и изготовлению новых деталей и узлов потребуют использования следующего оборудования:

  • токарный станок;
  • электропаяльник;
  • горелка для пайки с баллоном;
  • отвертки;
  • пассатижи;
  • амперметр;
  • вольтметр.

Вернуться к оглавлению

Теоретические основы

Сварочный аппарат для плазменной сварки может быть одного из 2-х основных типов: открытого и закрытого. Основная дуга сварочного аппарата открытого типа горит между центральным катодом горелки и изделием. Между соплом, которое служит анодом, и центральным катодом горит только дежурная дуга для возбуждения основной в любой момент времени. Сварочный аппарат закрытого типа имеет только дугу между центральным электродом и соплом.

Сделать долговечный по 2-му принципу довольно трудно. При прохождении основного сварочного тока через сопло-анод этот элемент испытывает колоссальные тепловые нагрузки и требует очень качественного охлаждения и использования соответствующих материалов. Обеспечить термостойкость конструкции, когда делается такой аппарат своими руками, очень трудно. Когда делается плазменный аппарат своими руками, для долговечности лучше выбирать открытую схему.

Вернуться к оглавлению

Практическая реализация

Часто при кустарном изготовлении плазменного сварочного аппарата сопло вытачивают из меди. При отсутствии альтернативы такой вариант возможен, но сопло становится расходным материалом даже при прохождении через него только дежурного тока. Его придется часто менять. Если удастся достать небольшой кусочек кругляка из молибдена или тантала, лучше сопло изготовить из них. Тогда можно будет ограничиваться периодической чисткой.

Размер центрального отверстия в сопле подбирают опытным путем. Начинать нужно с диаметра 0,5 мм и постепенно растачивать его до 2 мм, пока поток плазмы не станет удовлетворительным.

Конусный зазор между центральным вольфрамовым катодом и соплом-анодом должен составлять 2,5-3 мм.

Сопло вкручивается в полую рубашку охлаждения, которая через фторопластовый изолятор соединяется с держателем центрального электрода. В рубашке охлаждения циркулирует охлаждающая жидкость. В качестве таковой в теплое время года можно использовать дистиллированную воду, зимой лучше антифриз.

Рубашка охлаждения представляет собой 2 полые медные трубки. Внутренняя диаметром и длиной около 20 мм располагается на переднем конце внешней трубки с диаметром около 50 мм и длиной порядка 80 мм. Пространство между торцами внутренней трубки и стенками наружной запаивают тонкой листовой медью. В рубашку с помощью газовой горелки впаивают медные трубки диаметром 8 мм. По ним поступает и отводится охлаждающая жидкость. Кроме того, к рубашке охлаждения нужно припаять клемму для подачи положительного заряда.

Во внутренней трубке делают резьбу, в которую вкручивают съемное сопло из термостойких материалов. На выдвинутом конце наружной трубки также нарезают внутреннюю резьбу. В нее вкручивается изолирующее кольцо из фторопласта. В кольцо вкручивается держатель центрального электрода.

Через стенку наружной трубки в пространство между рубашкой охлаждения и фторопластовым изолятором впаивается трубка подачи аргона такого же диаметра, как для охлаждения.

По рубашке охлаждения циркулирует жидкость из бачка стеклоочистителя. Питание на насос его электродвигателя подается через отдельный выпрямитель на 12 В. Выход для подачи на бачке уже есть, возврат жидкости можно врезать через стенку или крышку бачка. Для этого в крышке сверлится отверстие и вставляется отрезок трубки через гермоввод. Резиновые шланги циркуляции жидкости и подачи аргона соединяются со своими трубками хомутами.

Положительный заряд берется от основного источника питания. Для ограничения тока через поверхность сопла подбирается подходящий электронный балласт. Подаваемый электрический ток должен иметь постоянное значение в районе 5-7 А. Оптимальная величина тока подбирается экспериментально. Это должен быть минимальный ток, который обеспечивает устойчивое горение дежурной дуги.

Возбуждение дежурной дуги между соплом и вольфрамовым катодом может осуществляться одним из двух способов. Встроенным в сварочный аппарат осциллятором или при его отсутствии контактным способом. Второй вариант требует усложнения конструкции плазменной горелки. Держатель центрального электрода при контактном возбуждении делают подпружиненным относительно сопла.

При нажатии на резиновую кнопку штока, соединенного с держателем электрода, острый конец центрального вольфрамового катода контактирует с конусной поверхностью штока. При коротком замыкании в точке контакта резко повышается температура, что позволяет возбудить дугу при отведении пружиной катода от анода. Контакт должен быть очень кратковременным, иначе поверхность сопла пригорит.

Возбуждение тока высокочастотным осциллятором предпочтительнее для долговечности конструкции. Но его приобретение или даже изготовление делает для плазменной сварки нерентабельным.

При работе положительный вывод сварочного аппарата соединяется с деталью без балласта. Когда сопло оказывается на расстоянии несколько миллиметров от заготовки, электрический ток переключается с сопла на деталь. Его значение вырастает до выставленного на сварочном аппарате, а образование из аргона плазмы интенсифицируется. Регулируя подачу аргона и сварочный ток, можно добиться необходимой интенсивности течения плазмы из сопла.

До недавнего времени, когда в домашних условиях возникала необходимость в резке металлических заготовок для различных нужд, у домашнего мастера выбор был не очень большим. Либо УШМ (угловая шлифовальная машина, в простонародье «болгарка»), либо газовый резак.

Но прогресс не стоит на месте, и относительно недавно для широких масс стало доступно принципиально иное средство для резки металла, более эффективное и удобное в эксплуатации. Речь идёт о или, как его ещё иногда называют, плазморезе. Учитывая высокую стоимость бытовых плазменных резаков заводского изготовления вполне рациональной выглядит идея попытаться собрать этот прибор в домашних условиях. А для того чтобы убедиться в целесообразности этой идеи, можно сравнить технологические особенности производимых работ с помощью вышеперечисленных приспособлений.

Самодельный плазморез

Сборка плазмореза в домашних условиях очень напоминает собирание конструктора. Дело в том, что все без исключения составные элементы плазмореза относятся к достаточно сложным технологическим изделиям. Изготовление этих элементов в домашних условиях с нуля не только требует очень глубоких познаний в данном предмете и соответствующего дорогостоящего оборудования, но и является небезопасным в плане здоровья домашнего мастера.

Например, температура внутри камеры сгорания плазмотрона составляет порядка 20000−30000 градусов. Поэтому лучше купить элементы, из которых состоит плазморез, уже готовыми, с гарантией высокой надёжности, чем пытаться сделать дома из подручных средств и тем самым подвергать опасности не только свою жизнь, но и жизнь своих близких.

Совсем ничего не понимающим в металлообработке необходимо знать хотя бы элементарные вещи, например, то, что лазерный резак по металлу и плазменный резак по металлу - это не одно и то же.

Составляющие элементы

Любой плазморез состоит из следующих элементов:

Инвертор или трансформатор

И у того, и у другого есть как положительные стороны, так и отрицательные. В конечном итоге выбор происходит в пользу конкретного устройства исходя из технических задач, которые ставятся перед будущим плазморезом.

Сварочный инвертор-полуавтомат

Наиболее оптимальное решение для личного гаража или небольшой мастерской.

Сварочный трансформатор

Более подходит для стационарных условий крупных мастерских или заводов.

Исходя из этих сравнительных характеристик домашние мастера чаще всего склоняются в сторону плазмореза из инвертора, собранного своими руками на базе сварочного инвертора.

Плазмотрон или резак

Основными компонентами плазморезки являются: два электрода, изолятор, разделяющий катодный и анодный узлы, и камера завихрения газовой смеси.

Принцип работы плазмотрона

Под давлением газ поступает в пространство между соплом и электродом. В момент включения осциллятора, в результате возникновения высокочастотного импульсного тока, между двумя электродами возникает электрическая дуга. Эта дуга носит название предварительной, и её задача - разогреть газ, находящийся в камере сгорания. Температура разогретого газа в камере относительно невысокая - порядка 5000−7000 градусов.

После того как предварительная дуга заполнит собой всё сопло, с помощью компрессора увеличивают давление подаваемого сжатого воздуха, в результате начинает происходить ионизация газа. Как следствие этого, газ расширяется в объёме, становится сверхпроводимым и разогревается до запредельно высоких температур порядка 20000−30000 градусов. Иными словами, газ превращается с плазму.

Под большим давлением плазма вырывается через узкое отверстие сопла наружу. В момент соприкосновения потока плазмы с поверхностью металла возникает вторая дуга - основная, или классическая. Роль второго электрода в этом случае берёт на себя сама плазма. Плазменная дуга мгновенно расплавляет металл в точке контакта. Под сильным напором сжатого воздуха расплавленный металл мгновенно выдувается, и в результате остаётся чистый рез.

Существуют два базовых условия, при соблюдении которых получается качественная резка с помощью плазмы:

  • Ток, подаваемый на электрод, должен обладать силой не менее 250 А.
  • Сжатый воздух подаётся в камеру сгорания со скоростью не менее 800−900 м/с.

Сложность изготовления плазмотрона

Схемы, чертежи для изготовления плазмореза своими руками очень легко найти в Интернете. Но плазменный резак очень сложно устроен и, кроме того, требует очень тонких настроек перед непосредственной эксплуатацией. Несмотря на обилие в Интернете соответствующих рекомендаций, чертежей и видеороликов, сделать плазмотрон дома технически крайне сложно. А если учесть, что затея эта ещё и крайне опасная для здоровья, то лучше от неё совсем отказаться и воспользоваться услугами «Али Экспресса» или ближайшего специализированного магазина.

Сборка из готовых комплектуюущих

Необходимо подключить сопло плазмореза к инвертору и компрессору. Осуществляется это посредством так называемого кабель-шлангового пакета. Оптимальным будет использовать для этих целей специальные зажимы и клемы, которые легко фиксируются и также легко снимаются.

Перед тем как начинается сборка, необходимо окончательно убедиться в совместимости всех комплектующих.

Порядок сборки достаточно прост:

  • Инвертор посредством электрического кабеля соединяется с электродом плазмореза.
  • Компрессор с помощью специального шланга присоединяется к рабочей камере плазмореза.

Даже при сборке из уже готовых комплектующих цена конечного продукта будет на несколько порядков меньше, чем если покупать готовый плазменный резак. После того как аппарат будет собран и станок будет готов к работе, нужно позаботиться о расходных материалах и некоторых аспектах эксплуатации устройства.

О том, как выбрать плазморез можно .

О том, как выбрать плазморез можно .

Плазменная сварка является современной передовой технологией. До недавнего времени ее применение относилось только к промышленности. Такая сварка производилась на специальном оборудовании. Сейчас плазменный сварочный аппарат своими руками стал реальностью.

Плазменная сварка имеет ряд неоспоримых преимуществ по сравнению с другими видами сварки. Обладание технологией позволяет расширить возможность сварных соединений металлов в домашних условиях. Аппарат можно использовать и для точечной сварки (рис. 1).

Самодельный сварочный аппарат, в том числе аппарат для точечной сварки, состоит из следующих основных частей: источник сварочного тока, плазмотрон, компрессор или баллон с газом и система охлаждения.

Рисунок 1. Конструкция плазменного сварочного аппарата.

При использовании устройства открытого типа (наиболее распространенная конструкция) применяется также источник тока для образования вспомогательной дуги.

В качестве источника тока для сварочной дуги лучше всего использовать стандартный инвертор для электродуговой сварки небольшой мощности. Такой инвертор обеспечивает подачу постоянного тока в сварочную зону, за счет чего зажигается основная дуга между соплом плазмотрона и свариваемой деталью. Мощность инвертора может быть минимальной, так как мощность дуги значительно усиливается за счет потока плазмы (рис. 2).

Изготовление вспомогательного источника тока

Источник тока для вспомогательной дуги собирается самостоятельно. Он включает выпрямительный диодный мост, выходной трансформатор (дроссель) и балластовый (нагрузочный) резистор. Рекомендуются следующие детали: диоды на ток 50 А и рабочее напряжение до 500 В; резистор мощностью до 5 кВт. За счет балластового резистора напряжение на первичной обмотке трансформатора создается порядка 100 В при токе не более 20 А.

Рисунок 2. Конструкция плазменного генератора.

Трансформатор подбирается так, чтобы на вторичной обмотке напряжение составило порядка 20 В. Можно использовать любой трансформатор 110/24 В мощностью 1,6 кВт (например, типа ОСМ). В качестве балластового сопротивления можно использовать любой нагревательный элемент или сборку из нескольких нагревателей.

Сборка вспомогательного источника производится в металлическом щитке. На дне щитка устанавливается трансформатор. Если балласт выполняется из нагревателей, то их следует разместить отдельно в металлическом каркасе. В щитке устанавливается контактная колодка, на которую выводятся концы вторичной обмотки трансформатора, и подключается кабель для подведения тока к плазмотрону.

Выбор источника газа и системы охлаждения

В качестве источника плазмообразующего газа, может использовать автомобильный компрессор для подачи сжатого воздуха мощностью до 50 л/мин. Если вместо газа используется водяной пар, то следует установить стандартный небольшой парогенератор. В этом случае следует использовать только дистиллированную воду.

Охлаждение анода плазмотрона может основываться на автомобильной стеклоочистительной системе. Если есть возможность, то лучше обеспечить охлаждение от водопроводной сети через резиновые шланги.

Как все выглядит?

Плазмотрон состоит из двух основных блоков – анодного и катодного. Анодный блок включает анод, выполненный в виде сопла, и корпус для крепления анода, в котором необходимо разместить охлаждающую рубашку (трубки, змеевик). На корпусе анода закрепляется винт для подведения электропитания.

Рисунок 3. Схема плазмотрона.

Катодный блок состоит из следующих основных частей: корпус блока, держатель катода, катод. В качестве катода используется вольфрамовый сварочный электрод диаметром 4 мм, который совмещен с хвостовиком. Верхняя часть хвостовика завершается регулировочным винтом с изолированной ручкой. Катод закрепляется в держателе катода. Держатель катода состоит из нескольких участков.

Нижний участок – заостренная трубка небольшого диаметра, выполняющая роль направляющей для катода. Средний участок – втулка с внешней резьбой для крепления на корпусе и внутренним каналом для прохождения электрода. Верхний участок – трубка для крепления электрода. Ее внутренний диаметр соответствует диаметру хвостовой части катода. Держатель катода устанавливается внутри корпуса, который выполнен из полимерной трубы. В корпусе катодного блока предусмотрено отверстие и соответствующий штуцер для подачи плазмообразующего газа. Газ подается через трубку, размещенную в пространстве между нижней частью держателя и корпусом. В держателе предусмотрен винт для подключения электрического питания. В корпусе просверлено отверстие для прохождения провода (кабеля) (рис.3).

Изготовление анодного блока

Анод изготавливается как медный колпачок (в виде шляпы). Общая длина анода – 10-15 мм. Нижняя торцевая часть (бортик) имеет диаметр 20-25 мм и длину 3-4 мм. Цилиндрическая часть – диаметром 15-20 мм. В центре анода на всю длину сверлится отверстие диаметром 1,8-2 мм. На цилиндрической части анода нарезается резьба для закручивания его в корпус.

Корпус анодного блока желательно изготовить из бронзы, но можно и из стали, в виде двух цилиндров (труб), между которыми располагается охлаждающая рубашка. Цилиндры свариваются (спаиваются) между собой. Наружный диаметр внешнего цилиндра рекомендуется 50-80 мм. Но размеры цилиндров могут быть любыми с учетом найденных труб. Главное условие: корпус должен состоять из двух цилиндров, которые входят друг в друга, при этом внутренний диаметр должен быть равен диаметру цилиндрической части анода, а между цилиндрами должны располагаться трубки охлаждающего змеевика. Длина корпуса – 30-60 мм.

На цилиндре нарезается резьба с обоих торцов. На нижнем торце резьба нарезается внутри и предназначена для крепления анода, на верхнем торце – внутри внешнего цилиндра для соединения с катодным блоком. На наружном цилиндре изготавливается отверстие с резьбой для установки винта, обеспечивающего подключение кабеля.

Изготовление катодного блока

Корпус катодного блока изготавливается из полимерной или текстолитовой трубы диаметром равным внутреннему диаметру внешнего цилиндра анодного блока. На нижнем торце трубы нарезается внешняя резьба для соединения с корпусом анодного блока. Внутри корпуса нарезается резьба для ввинчивания держателя катода. Длина корпуса 7-10 см.

Держатель катода изготавливается из бронзы или стали и имеет разный диаметр на разных участках. Нижний участок, длиной в 15-20 мм, выполняется в виде заостренной трубки диаметром в 8-10 мм и внутренним диаметром в 5-5,5 мм.

Средний участок, длиной в 20-25 мм, имеет диаметр равный внутреннему диаметру корпуса катодного блока. На этом участке нарезается резьба для крепления на корпусе.

Диаметр внутреннего канала должен быть не менее 5 мм. Верхний участок, длиной в 30-40 мм, имеет диаметр 10-15 мм. Внутренний диаметр этого участка 6-7 мм. На верхнем участке держателя нарезается внутренняя резьба для крепления электрода. Снаружи в верхней части нарезается резьба на длине 20-25 мм для установки стопорной гайки. Такой держатель лучше всего изготовить на токарном станке.

Катод изготавливается из стандартного вольфрамового сварочного электрода диаметром 4 мм. Его конец заостряется. Вольфрамовый стержень длиной в 40-50 мм прочно соединяется с хвостовиком катода, на котором нарезается резьба для крепления на верхнем участке держателя катода. Длина хвостовика 40-60 мм, диаметр 6-7 мм. Верхняя часть хвостовика переходит в регулировочный винт (любой формы), который, в свою очередь, имеет ручку из изоляционного материала. Катод закручивается во внутренний канал держателя так, чтобы его заостренный конец вышел из нижнего (направляющего) участка держателя на 5-10 мм. Путем вращения ручкой положение катода можно изменять.

Для ограничения и контроля продольного перемещения катода служит стопорная гайка, установленная на держателе.

В корпусе катодного блока на уровне нижнего участка держателя сверлится отверстие и устанавливается штуцер для подачи плазмообразующего газа. Газ подается через трубку, размещенную в пространстве между нижней частью держателя и корпусом. В держателе предусмотрен винт для подключения электрического питания. В верхней части корпуса просверлено отверстие для прохождения провода (кабеля).

Сборка плазмотрона

Вначале собирается катодный блок в следующей последовательности. Электрод вкручивается в держатель. Затем держатель вкручивается в корпус. К винту держателя подключается провод, который выводится через отверстие в корпусе. Катодный корпус вкручивается в анодный корпус. Снизу в анодный корпус вкручивается анод. Электрод дополнительно подкручивается так, чтобы стержень уперся в анод. Стопорная гайка на держателе устанавливается по этому положению электрода.

Сборка сварочного аппарата

Сборка сварочного аппарата включает в себя следующие операции. К контактному винту анодного блока плазмотрона присоединяется одна из жил сварочного кабеля от инвертора, вторая закрепляется на свариваемой детали. К штуцеру в анодном блоке присоединяется шланг охлаждения, а к штуцеру катодного блока – шланг от компрессора. На контактных винтах анодного и катодного блоков плазмотрона закрепляется кабель от трансформатора питания вспомогательной дуги. При зажигании вспомогательной дуги катод касается анода и затем быстро отводится на 2-3 мм.

Необходимый инструмент и оборудование.

При изготовлении самодельного сварочного аппарата необходимо использование следующего инструмента:

  • сварочный аппарат;
  • электродрель;
  • болгарка;
  • фрезер;
  • напильник;
  • ножовка по металлу;
  • тиски;
  • круг наждачный;
  • плоскогубцы;
  • отвертка;
  • ключи гаечные;
  • зубило;
  • молоток;
  • штангенциркуль;
  • метчик;
  • плашка;

Плазменная сварка современный эффективный вид сварки. Самодельный сварочный аппарат поможет производить практически любые сварочные работы, в том числе работать как сварочный аппарат для точечной сварки.

Технология и различных металлических изделий с одинаковым успехом применяется в быту и на крупных промышленных производствах. С помощью специального оборудования можно с легкостью разрезать цветные металлы, а также качественно работать с нержавеющей сталью, алюминием и другими сплавами. Разрезание цветных металлов осуществляется при помощи специальных плазморезов, которые одновременно просты в использовании, функциональны и надёжны. Расскажем поподробнее об этом оборудовании и поговорим о том, как изготовить плазменный резак своими руками из инвертора.

Промышленные плазменные резаки — это производительное оборудование, которое позволяет осуществлять максимально точный раскрой различных по показателям тугоплавкости металлов. Такие промышленные плазморезы предназначены в первую очередь для эксплуатации в условиях повышенных нагрузок и оснащаются ЧПУ, что обеспечивает возможность изготовления деталей серийным способом.

Если вам необходим плазморез для бытового использования, а также для применения такого оборудования в строительстве, то такой резак можно изготовить своими руками из простейшего сварочного инвертора . В последующем выполненное своими руками оборудование будет отличаться универсальностью в использовании, позволит эффективно разрезать цветные металлы и толстую листовую сталь.

Выполнить такой резак своими руками из инвертора не составит какой-либо особой сложности. Схемы выполнения подобных устройств вы можете с легкостью найти в сети Интернет и по полученным расчетам выполнить такое простое в использовании устройство. Можем порекомендовать вам делать резаки для плазмы на базе компактных сварочных инверторов, что позволит обеспечить существенное упрощение конструкции и гарантирует необходимую эффективность таких устройств.

Самодельные аппараты для плазменной резки не оснащаются ЧПУ, поэтому использовать такое оборудование для работы, которая полностью контролируется автоматикой, будет невозможно. Вы должны понимать, что с использованием таких самодельных плазморезов выполнить две идеально точные детали будет нельзя.

Самодельный плазморез будет состоять из следующих элементов:

  • Плазмотрона.
  • Источника постоянного тока.
  • Компрессора или же баллона с газом.
  • Осциллятора.
  • Кабелей питания.
  • Шлангов подключения.

Принцип работы

Принцип работы такого оборудования чрезвычайно прост:

  1. Используемый источник тока, а в нашем случае это инвертор, вырабатывает напряжение и по кабелям подаёт его в плазмотрон.
  2. В плазмотроне находятся два электрода, между которыми и возбуждается высокотемпературная дуга.
  3. По специально закрученным каналам под высоким давлением в рабочую область с зажженной дугой подается поток воздуха или газ.
  4. К разрезаемому изделию предварительно подключается кабель массы, который замыкается на разрезаемую поверхность и обеспечивает возможность работы с металлом.

Источники постоянного тока

Технология плазменной резки неизменно потребует высокой мощности рабочего тока, показатели которого должны находиться на уровне полупрофессиональных и профессиональных инверторных сварочных аппаратов. Использовать в качестве источника тока трансформаторные сварочные аппараты не рекомендуется, так как подобные устройства отличаются громоздкими габаритами и неудобны в работе. А вот инвертор станет отличным выбором, так как такие устройства сочетают компактные габариты и обеспечивают качественный электроток.

Схемы и чертежи плазмореза своими руками отличаются простотой, при этом существенно сокращаются затраты на изготовление такого оборудования. Сделанный ручной компактный плазморез из сварочного инвертора сможет справиться с резкой металла, толщина листа которого будет достигать 30 мм. Если говорить о преимуществах таких домашних плазморезов, выполненных с использованием инвертора, то отметим следующее:

  • Отсутствие искр металла.
  • Гладкость кромок.
  • Точность линий.
  • Решены проблемы с перегревом.

Важно: выполнить самодельный плазморез на базе инвертора не составит труда. Необходимо лишь, чтобы аппарат генерировал электроток с силой не менее 30 Ампер.

Используемый источник тока должен соответствовать следующим требованиям:

  • Питание от сети с напряжением 220 Вольт.
  • Возможность работать с мощностью в 4 кВт.
  • Показатель холостого хода должен составлять 220 Вольт.
  • Диапазон регулировки силы тока находится в диапазоне 20−40 Ампер.

Конструкция плазмотрона

Плазмотрон является вторым по важности элементом резака для металла. Рассмотрим поподробнее конструкцию плазмотрона и принцип его работы. Состоит он из основного и вспомогательного электрода. Основной электрод выполняется из тугоплавких металлов, а вспомогательный, который имеет форму сопла, обычно делается из меди.

В плазмотроне катодом является основной электрод из тугоплавкого металла, а медный электрод-сопло используется в качестве анода, что и позволяет обеспечить качественный электроток и высокотемпературную дугу для разрезания металла.

Выполненный плазмотрон отвечает за создание и поддержание дуги, которая располагается между обрабатываемой деталью и резаком. От формы и конструкции сопла будет зависеть толщина реза, а также температура, которая создается таким резаком. Используемое сопло может выполняться с полусферической или конической формой, обеспечивая рабочую температуру на уровне 30 000 градусов по Цельсию.

В процессе эксплуатации плазмотрона основной электрод и сопло могут изнашиваться, что приводит к ухудшению качества резки металла. При таком износе этих элементов их следует заменить на новые, что позволит гарантировать отличное качество работы с металлом.

К плазмотрону подается рабочий газ из баллона, при этом используются специальные сверхпрочные газовые шланги, способные выдерживать повышенное давление. В каждом конкретном случае в зависимости от материала, с которым проводится работа, используемый газ, который необходим для разрезания металла, может отличаться.

Рабочий газ подается по специальным каналам, причём наличие у трубки подачи многочисленных витков позволяет обеспечить нужные завихрения воздуха, что, в свою очередь, гарантирует качественную разрезающую плазменную дугу, которая будет иметь правильную форму. Тем самым улучшается качество резки и сварки металла и минимизируется толщина шва.

Осциллятор

Особенностью плазморезов является тот факт, что для начала работы необходим предварительный поджиг дуги , лишь после этого в плазмотрон подается газ, создаётся необходимой температуры дуга и осуществляется разрезание металла. В качестве такого своеобразного стартера используется осциллятор, который и служит для предварительного поджига дуги. Схема выполнения осциллятора не представляет сложности.

В Интернете вы сможете найти функциональные и электрические схемы осцилляторов, выполнить которые не составит труда. Необходимо лишь использовать качественные электросхемы и конденсаторы, которые будут по своим параметрам подходить к генерируемому инвертором электротоку. В зависимости от своего типа такая горелка может включаться в схему питания плазмотрона последовательно или параллельно.

Рабочий газ

Ещё перед тем как выбирать конкретную схему изготовления плазменного резака, следует определиться со сферой использования такого оборудования. В том случае, если вы планируете использовать аппарат исключительно для работы с черными металлами, можно исключить из схемы баллоны с газом, а использовать один лишь компрессор со сжатым воздухом. Если же планируется применять такое оборудование для латуни, титана и меди, то необходимо выбирать схему плазменного резака с баллоном с азотом. Резка алюминия выполняется при помощи специальной смеси газа с водородом и азотом.

Разберемся с тем, как осуществляется плазменная резка металла своими руками. После включения инвертора сгенерированный электрический ток поступает в плазменный резак на электрод, осциллятор поджигает электрическую дугу. Ее температура изначально может составлять 6−8 тысяч градусов. Сразу же после поджигания дуги в сопло под высоким давлением подается воздух или газ, через который проходит электрический заряд. Воздушный поток нагревается и ионизируется электрической дугой, после чего его объём может увеличиваться в сотни раз, а сам газ и воздух начинает проводить электрический ток.

Плазморезка формирует тонкую струю плазмы, температура которой может достигать 30 000 градусов. В последующем такая высокотемпературная струя плазмы подаётся на обрабатываемый металл, что позволяет осуществлять разрезание сверхпрочных металлических элементов.

Одной из особенностей использования плазменной резки является тот факт, что обрабатываемый металл режется и плавится исключительно в месте воздействия на него плазменного потока. Крайне важно правильно позиционировать пятно воздействия плазмы, которое должно находиться строго в центре рабочего электрода. В том случае, если пренебрегать этим требованием, нарушается воздушно-плазменный поток, что ухудшает качество разрезания металла.

Качество работы с таким плазменным резаком будет также зависеть от скорости подачи воздушного потока. Рекомендуется все работы выполнять с силой тока в 250 Ампер, при этом скорость воздушной струи будет составлять 800 метров в секунду. Это позволит с легкостью работать с различными по своим характеристикам тугоплавкости металлам, обеспечивая качественное разрезание без термического воздействия на структуру сплава.

Плазморез представляет собой специальное устройство, которое позволяет быстро, качественно и эффективно разрезать различный по своей структуре металл. Можно как приобрести уже изготовленные в заводских условиях плазморезы, так и выполнить их самостоятельно. Вы с легкостью сможете найти подходящие для вас схемы выполнения плазменных резаков из инвертора или трансформаторного сварочного аппарата, что и позволит самостоятельно выполнить такое оборудование, сэкономив на его покупке в магазине.

Резка листового металла плазмой обычно применяется на крупных производствах для изготовления сложных по конфигурации деталей. Резать на промышленных станках можно любые металлы - сталь обычную и нержавеющую, алюминий, медь, латунь, сверхтвердые сплавы. Плазморез своими руками сделать тоже можно, причем вполне работоспособную конструкцию, правда с несколько ограниченными возможностями.

Для крупносерийного производства она будет непригодна, но вырезать несколько деталей в слесарной мастерской, металлообрабатывающем цехе или в домашних условиях, в гараже, например, всегда получится. При этом по сложности конфигурации и твердости обрабатываемого металла ограничений практически нет. Ограничения касаются толщины металла, размеров листа и скорости резания.

Проще всего построить плазменный аппарат для резки на базе инверторного сварочного аппарата. Плазморез своими руками из инвертора отличается относительно простой конструкцией, работоспособностью, доступностью основных узлов и деталей. Которые нет возможности купить, можно сделать самостоятельно в условиях мастерской средней оснащенности оборудованием.

Самодельный аппарат плазменной резки не оборудуется ЧПУ - в этом его недостаток и преимущество. Недостаток состоит в том, что сложно изготовить две абсолютно точные детали при управлении вручную. Даже мелкие серии заготовок будут в чем-то отличаться.

Преимущество же состоит в том, что один из самых дорогостоящих узлов не придется покупать. Сделать его под силу не каждому инженеру высшей квалификации, а собирать из готовых узлов - то же, что покупать новое устройство. Для мобильного резака ЧПУ не нужно, в силу других задач, которые он выполняет.

Главными составными частями самодельного плазмореза являются:

  • источник постоянного тока;
  • плазмотрон;
  • осциллятор
  • компрессор или баллон со сжатым газом;
  • шланги подключения;
  • кабеля питания.

Как видно, ничего особо сложного в состав аппарата не входит. Но сложности начинаются при ближайшем рассмотрении характеристик того или иного узла.

Источник тока

Особенности плазменной резки требуют, чтобы сила тока находилась по меньшей мере на уровне сварочного аппарата средней мощности. Такой ток вырабатывается обычным сварочным трансформатором и инверторным аппаратом. В первом случае установка получится условно мобильной - большой вес и габариты трансформатора затруднит ее перемещение. В сочетании с баллоном для сжатого газа или компрессором система получится довольно громоздкой.

Кроме того, трансформаторы отличаются невысоким КПД, что приведет к повышенному расходу электроэнергии при резке металла. Схема с использованием инвертора несколько проще и удобнее в эксплуатации, как и выгоднее по затратам энергии. Из сварочного инвертора получится довольно компактный плазморез, который без труда справиться с резкой металла толщиной до 25-30 мм. Именно для таких толщин применяются и промышленные установки. на трансформаторе сможет обрабатывать более толстые заготовки, но это требуется реже. Все преимущества плазменной резки проявляются именно на тонких и сверхтонких листах. Это:

  • точность линии;
  • гладкость кромок;
  • отсутствие брызг металла;
  • нет перегретых зон вблизи места взаимодействия дуги и металла.

Самодельный плазморез собирается на базе любого инверторного аппарата для сварки. Количество режимов работы не имеет значения - нужен только постоянный ток силой более 30А.

Плазмотрон

Второй по важности элемент плазмореза. Рассмотрим коротко принцип его работы. Плазменный резак состоит из двух электродов, один из которых, основной, сделан из тугоплавкого металла, вторым является сопло. Обычно его делают из меди. Катодом служит основной электрод, анодом сопло, а при работе - обрабатываемая токопроводящая деталь.

В данном случае мы рассматриваем плазмотрон прямого действия для резки металлов. Дуга возникает между резаком и обрабатываемой деталью. Существуют еще плазмотроны косвенного действия, которые режут плазменной струей, но о них будет сказано ниже. Плазморез из инвертора рассчитан на прямое действие.

Кроме электрода и сопла, которые являются расходными материалами и могут заменяться по мере износа, в корпусе плазмотрона есть изолятор, разделяющий катодный и анодный узлы и небольшая камера, в которой подаваемый газ завихрятся. В сопле конической или полусферической сделано тонкое отверстие, сквозь которое вырывается раскаленный до температуры 5000-3000 0 С газ.

Подается в камеру газ из баллона или от компрессора по шлангу, совмещенному с кабелями питания, которые образуют шлангово-кабельный пакет. Они соединены в одном изоляционном рукаве, или соединены в виде жгута. Газ поступает в камеру через прямой патрубок, расположенный сверху или сбоку вихревой камеры, которая нужна, чтобы рабочая среда перемещалась только в одну сторону.

Как работает плазмотрон

Газ, поступая под давлением в пространство между соплом (анодом) и электродом (катодом) спокойно проходит в рабочее отверстие и уходит в атмосферу. При включении осциллятора, устройства вырабатывающего импульсный высокочастотный ток, между электродами возникает дуга, которая называется предварительной и нагревает газ, находящийся в ограниченном пространстве камеры сгорания. Температура нагрева столь высока, что он переходит в другой вид физического состояния - плазму.

Этот вид материального состояния отличается тем, что практически все атомы ионизированы, то есть электрически заряженные. Кроме того, давление в камере резко возрастает и газ вырывается наружу в виде раскаленной струи. При поднесении плазмотрона к детали, возникает вторая дуга, более мощная. Если сила тока от осциллятора равна 30-60 А, то рабочая дуга возникает при 180-200 А.

Эта дуга дополнительно разогревает газ, которые разгоняется под действием электрических сил до чрезвычайно высокой скорости - до 1500 м/с. Комбинированное действие высокой температуры плазмы и скорости движения разрезает металл по очень тонкой линии. Толщина разреза зависит от свойств сопла.

По-другому работает плазмотрон косвенного действия, в нем в качестве основного анода выступает сопло. Из резака вырывается не дуга, а поток плазмы - струя, которая и режет не токопроводящие вещества. Оборудование-самоделка с такими плазмотронами работает очень редко.

Из–за сложности и тончайших настроек изготовить его практически невозможно самостоятельно, несмотря на простые чертежи, которые есть в интернете. Он работает под высокими давлениями и температурами и становится попросту опасным, если что-то сделать не так. Плазморез по чертежам своими руками можно собрать из готовых деталей, которые продаются в магазинах сварочного оборудования. Но, как и большинство машин и механизмов, сборка из комплектующих стоит дороже, чем готовый резак в сборе.

Осциллятор

Это своеобразный стартер, служащий для запуска предварительной дуги. Для разбирающихся в электронике схема его несложна. Функциональная схема выглядит так:

А электрическая примерно так (один из вариантов):

Как выглядит и работает самодельный осциллятор видно на видео. Если сборкой электросхем и поиском деталей нет времени заниматься, воспользуйтесь осцилляторами заводского изготовления, например ВСД-02. Его характеристики лучше всего подходят для работы с инвертором. Подсоединяется питания плазмотрона параллельно или последовательно, в зависимости от требований инструкции конкретного прибора.

Рабочий газ

Перед тем, как сделать плазморез, следует очертить предварительную сферу его применения. Если вы собираетесь работать только с черными металлами, то обойтись можно только компрессором. Для меди, титана и латуни потребуется азот, а происходит в смеси азота с водородом. Высоколегированные стали режутся в аргоновой атмосфере. В этом случае аппарат рассчитывается еще и под сжатый газ.

Сборка устройства

Ввиду достаточной сложности и многочисленности компонентов аппарата плазменной резки, его трудно разместить в переносном корпусе или ящике. Лучше всего использовать складскую тележку для перевозки товаров. На ней можно компактно расположить инвертор, баллоны или компрессор, кабельно-шланговую группу. В пределах цеха или мастерской перемещать их очень легко. Если потребуется выезд на другой объект, то все можно загрузить в прицеп легкового автомобиля.