Kvadratna jednadžba ima najviše dva korijena. Rješavanje kvadratnih jednadžbi. Kako riješiti kompletnu kvadratnu jednačinu

Nadam se da ćete nakon proučavanja ovog članka naučiti pronaći korijene potpunog kvadratna jednačina.

Koristeći diskriminant, rješavaju se samo potpune kvadratne jednadžbe, koriste se druge metode koje ćete pronaći u članku “Rješavanje nepotpunih kvadratnih jednadžbi”.

Koje se kvadratne jednačine nazivaju potpunim? Ovo jednadžbe oblika ax 2 + b x + c = 0, pri čemu koeficijenti a, b i c nisu jednaki nuli. Dakle, da bismo riješili potpunu kvadratnu jednačinu, moramo izračunati diskriminanta D.

D = b 2 – 4ac.

U zavisnosti od vrijednosti diskriminanta, zapisaćemo odgovor.

Ako je diskriminant negativan broj (D< 0),то корней нет.

Ako je diskriminant jednaka nuli, tada je x = (-b)/2a. Kada je diskriminant pozitivan broj (D > 0),

tada je x 1 = (-b - √D)/2a, i x 2 = (-b + √D)/2a.

Na primjer. Riješite jednačinu x 2– 4x + 4= 0.

D = 4 2 – 4 4 = 0

x = (- (-4))/2 = 2

Odgovor: 2.

Riješite jednačinu 2 x 2 + x + 3 = 0.

D = 1 2 – 4 2 3 = – 23

Odgovor: nema korijena.

Riješite jednačinu 2 x 2 + 5x – 7 = 0.

D = 5 2 – 4 2 (–7) = 81

x 1 = (-5 - √81)/(2 2)= (-5 - 9)/4= – 3,5

x 2 = (-5 + √81)/(2 2) = (-5 + 9)/4=1

Odgovor: – 3,5; 1.

Dakle, zamislimo rješenje potpune kvadratne jednadžbe koristeći dijagram na slici 1.

Koristeći ove formule možete riješiti bilo koju potpunu kvadratnu jednadžbu. Samo treba biti oprezan jednačina je napisana kao polinom standardnog oblika

A x 2 + bx + c, inače možete pogriješiti. Na primjer, u pisanju jednačine x + 3 + 2x 2 = 0, možete pogrešno odlučiti da

a = 1, b = 3 i c = 2. Tada

D = 3 2 – 4 1 2 = 1 i tada jednačina ima dva korijena. A to nije istina. (Vidi rješenje za primjer 2 iznad).

Dakle, ako jednačina nije napisana kao polinom standardnog oblika, prvo se kompletna kvadratna jednačina mora napisati kao polinom standardnog oblika (monom sa najvećim eksponentom treba da bude prvi, tj. A x 2 , zatim sa manje bx a zatim slobodan član With.

Prilikom rješavanja reducirane kvadratne jednadžbe i kvadratne jednadžbe s parnim koeficijentom u drugom članu, možete koristiti druge formule. Hajde da se upoznamo sa ovim formulama. Ako u potpunoj kvadratnoj jednadžbi drugi član ima paran koeficijent (b = 2k), onda možete riješiti jednačinu koristeći formule prikazane na dijagramu na slici 2.

Potpuna kvadratna jednadžba se naziva redukovanom ako je koeficijent at x 2 jednako jedan i jednačina će poprimiti oblik x 2 + px + q = 0. Takva jednadžba se može dati za rješenje ili se može dobiti dijeljenjem svih koeficijenata jednačine sa koeficijentom A, stoji na x 2 .

Na slici 3 prikazan je dijagram za rješavanje redukovanog kvadrata
jednačine. Pogledajmo primjer primjene formula o kojima se govori u ovom članku.

Primjer. Riješite jednačinu

3x 2 + 6x – 6 = 0.

Rešimo ovu jednačinu koristeći formule prikazane na dijagramu na slici 1.

D = 6 2 – 4 3 (– 6) = 36 + 72 = 108

√D = √108 = √(36 3) = 6√3

x 1 = (-6 - 6√3)/(2 3) = (6 (-1- √(3)))/6 = –1 – √3

x 2 = (-6 + 6√3)/(2 3) = (6 (-1+ √(3)))/6 = –1 + √3

Odgovor: –1 – √3; –1 + √3

Možete primijetiti da je koeficijent x u ovoj jednadžbi paran broj, odnosno b ​​= 6 ili b = 2k, odakle je k = 3. Zatim pokušajmo riješiti jednačinu koristeći formule prikazane na dijagramu slike D 1 = 3 2 – 3 · (– 6 ) = 9 + 18 = 27

√(D 1) = √27 = √(9 3) = 3√3

x 1 = (-3 - 3√3)/3 = (3 (-1 - √(3)))/3 = – 1 – √3

x 2 = (-3 + 3√3)/3 = (3 (-1 + √(3)))/3 = – 1 + √3

Odgovor: –1 – √3; –1 + √3. Uočivši da su svi koeficijenti u ovoj kvadratnoj jednadžbi djeljivi sa 3 i izvršivši podjelu, dobijamo redukovanu kvadratnu jednačinu x 2 + 2x – 2 = 0 Riješite ovu jednačinu koristeći formule za redukovanu kvadratnu jednačinu
jednadžbe na slici 3.

D 2 = 2 2 – 4 (– 2) = 4 + 8 = 12

√(D 2) = √12 = √(4 3) = 2√3

x 1 = (-2 - 2√3)/2 = (2 (-1 - √(3)))/2 = – 1 – √3

x 2 = (-2 + 2√3)/2 = (2 (-1+ √(3)))/2 = – 1 + √3

Odgovor: –1 – √3; –1 + √3.

Kao što vidimo, prilikom rješavanja ove jednačine po razne formule dobili smo isti odgovor. Stoga, nakon što ste temeljito savladali formule prikazane na dijagramu na slici 1, uvijek ćete moći riješiti bilo koju potpunu kvadratnu jednačinu.

web stranicu, kada kopirate materijal u cijelosti ili djelomično, link na izvor je obavezan.


Nastavljamo da proučavamo temu “ rješavanje jednačina" Već smo se upoznali sa linearnim jednačinama i prelazimo na upoznavanje sa kvadratne jednačine.

Prvo ćemo pogledati šta je kvadratna jednačina i kako je napisana opšti pogled, i dati povezane definicije. Nakon toga ćemo na primjerima detaljno ispitati kako se rješavaju nepotpune kvadratne jednadžbe. Zatim ćemo prijeći na rješavanje kompletnih jednadžbi, dobiti formulu korijena, upoznati se s diskriminantom kvadratne jednadžbe i razmotriti rješenja tipičnih primjera. Na kraju, pratimo veze između korijena i koeficijenata.

Navigacija po stranici.

Šta je kvadratna jednačina? Njihove vrste

Prvo morate jasno razumjeti šta je kvadratna jednačina. Stoga je logično započeti razgovor o kvadratnim jednačinama definicijom kvadratne jednačine, kao i srodnim definicijama. Nakon toga, možete razmotriti glavne vrste kvadratnih jednadžbi: redukovane i nereducirane, kao i potpune i nepotpune jednadžbe.

Definicija i primjeri kvadratnih jednadžbi

Definicija.

Kvadratna jednadžba je jednadžba oblika a x 2 +b x+c=0, gdje je x varijabla, a, b i c su neki brojevi, a a nije nula.

Recimo odmah da se kvadratne jednačine često nazivaju jednačinama drugog stepena. To je zbog činjenice da je kvadratna jednačina algebarska jednačina drugi stepen.

Navedena definicija nam omogućava da damo primjere kvadratnih jednadžbi. Dakle, 2 x 2 +6 x+1=0, 0,2 x 2 +2,5 x+0,03=0, itd. Ovo su kvadratne jednadžbe.

Definicija.

Brojevi a, b i c se nazivaju koeficijenti kvadratne jednačine a·x 2 +b·x+c=0, a koeficijent a se naziva prvi, ili najveći, ili koeficijent od x 2, b je drugi koeficijent, ili koeficijent od x, a c je slobodni član .

Na primjer, uzmimo kvadratnu jednačinu oblika 5 x 2 −2 x −3=0, ovdje je vodeći koeficijent 5, drugi koeficijent je jednak −2, a slobodni član je jednak −3. Imajte na umu da kada su koeficijenti b i/ili c negativni, kao u upravo datom primjeru, kratka forma kvadratne jednadžbe je 5 x 2 −2 x−3=0, a ne 5 x 2 +(−2) ·x+(−3)=0 .

Vrijedi napomenuti da kada su koeficijenti a i/ili b jednaki 1 ili −1, oni obično nisu eksplicitno prisutni u kvadratnoj jednadžbi, što je posljedica posebnosti pisanja takvog . Na primjer, u kvadratnoj jednadžbi y 2 −y+3=0 vodeći koeficijent je jedan, a koeficijent za y jednak je −1.

Reducirane i nereducirane kvadratne jednadžbe

U zavisnosti od vrijednosti vodećeg koeficijenta razlikuju se redukovane i nereducirane kvadratne jednadžbe. Dajemo odgovarajuće definicije.

Definicija.

Poziva se kvadratna jednadžba u kojoj je vodeći koeficijent 1 data kvadratna jednačina. Inače kvadratna jednačina je netaknut.

Prema ovu definiciju, kvadratne jednačine x 2 −3·x+1=0, x 2 −x−2/3=0, itd. – dato, u svakom od njih je prvi koeficijent jednak jedan. A 5 x 2 −x−1=0, itd. - nereducirane kvadratne jednadžbe čiji su vodeći koeficijenti različiti od 1.

Iz bilo koje nereducirane kvadratne jednadžbe, dijeljenjem obje strane s vodećim koeficijentom, možete prijeći na redukovanu. Ova akcija je ekvivalentna transformacija, odnosno ovako dobijena redukovana kvadratna jednadžba ima iste korijene kao i originalna nereducirana kvadratna jednadžba, ili, poput nje, nema korijena.

Pogledajmo primjer kako se izvodi prijelaz iz nereducirane kvadratne jednadžbe na redukovanu.

Primjer.

Iz jednačine 3 x 2 +12 x−7=0 idite na odgovarajuću redukovanu kvadratnu jednačinu.

Rješenje.

Samo trebamo podijeliti obje strane originalne jednadžbe sa vodećim koeficijentom 3, on je različit od nule, tako da možemo izvesti ovu radnju. Imamo (3 x 2 +12 x−7):3=0:3, što je isto, (3 x 2):3+(12 x):3−7:3=0, a zatim (3: 3) x 2 +(12:3) x−7:3=0, odakle je . Tako smo dobili redukovanu kvadratnu jednačinu, koja je ekvivalentna originalnoj.

odgovor:

Potpune i nepotpune kvadratne jednadžbe

Definicija kvadratne jednadžbe sadrži uvjet a≠0. Ovaj uslov je neophodan da bi jednadžba a x 2 + b x + c = 0 bila kvadratna, jer kada je a = 0 zapravo postaje linearna jednačina oblika b x + c = 0.

Što se tiče koeficijenata b i c, oni mogu biti jednaki nuli, kako pojedinačno tako i zajedno. U tim slučajevima, kvadratna jednačina se naziva nepotpuna.

Definicija.

Kvadratna jednačina a x 2 +b x+c=0 se zove nepotpuna, ako je barem jedan od koeficijenata b, c jednak nuli.

Zauzvrat

Definicija.

Potpuna kvadratna jednadžba je jednadžba u kojoj su svi koeficijenti različiti od nule.

Takva imena nisu data slučajno. To će postati jasno iz narednih diskusija.

Ako je koeficijent b nula, tada kvadratna jednačina ima oblik a·x 2 +0·x+c=0, i ekvivalentna je jednačini a·x 2 +c=0. Ako je c=0, odnosno kvadratna jednadžba ima oblik a·x 2 +b·x+0=0, onda se može prepisati kao a·x 2 +b·x=0. A sa b=0 i c=0 dobijamo kvadratnu jednačinu a·x 2 =0. Rezultirajuće jednadžbe se razlikuju od potpune kvadratne jednadžbe po tome što njihove lijeve strane ne sadrže ni član s promjenljivom x, ni slobodni član, ili oboje. Otuda i njihov naziv - nepotpune kvadratne jednadžbe.

Dakle, jednačine x 2 +x+1=0 i −2 x 2 −5 x+0,2=0 su primjeri potpunih kvadratnih jednačina, a x 2 =0, −2 x 2 =0, 5 x 2 +3=0 , −x 2 −5 x=0 su nepotpune kvadratne jednadžbe.

Rješavanje nepotpunih kvadratnih jednadžbi

Iz podataka iz prethodnog stava proizilazi da postoji tri vrste nepotpunih kvadratnih jednadžbi:

  • a·x 2 =0, njemu odgovaraju koeficijenti b=0 i c=0;
  • a x 2 +c=0 kada je b=0;
  • i a·x 2 +b·x=0 kada je c=0.

Ispitajmo redom kako se rješavaju nepotpune kvadratne jednadžbe svakog od ovih tipova.

a x 2 =0

Počnimo sa rješavanjem nepotpunih kvadratnih jednadžbi u kojima su koeficijenti b i c jednaki nuli, odnosno sa jednadžbama oblika a x 2 =0. Jednačina a·x 2 =0 je ekvivalentna jednačini x 2 =0, koja se dobija iz originala dijeljenjem oba dijela brojem a koji nije nula. Očigledno, korijen jednačine x 2 =0 je nula, jer je 0 2 =0. Ova jednadžba nema druge korijene, što se objašnjava činjenicom da za bilo koji broj p različit od nule vrijedi nejednakost p 2 >0, što znači da za p≠0 jednakost p 2 =0 nikada nije postignuta.

Dakle, nepotpuna kvadratna jednadžba a·x 2 =0 ima jedan korijen x=0.

Kao primjer dajemo rješenje nepotpune kvadratne jednadžbe −4 x 2 =0. Ekvivalentna je jednadžbi x 2 =0, njen jedini korijen je x=0, dakle, originalna jednačina ima jedan korijen nula.

Kratko rješenje u ovom slučaju može se napisati na sljedeći način:
−4 x 2 =0 ,
x 2 =0,
x=0 .

a x 2 +c=0

Pogledajmo sada kako se rješavaju nepotpune kvadratne jednadžbe u kojima je koeficijent b nula i c≠0, odnosno jednadžbe oblika a x 2 +c=0. Znamo da premještanje člana s jedne strane jednačine na drugu sa suprotnim predznakom, kao i dijeljenje obje strane jednačine brojem različitom od nule, daje ekvivalentnu jednačinu. Stoga možemo izvršiti sljedeće ekvivalentne transformacije nepotpune kvadratne jednadžbe a x 2 +c=0:

  • pomjeriti c na desnu stranu, što daje jednačinu a x 2 =−c,
  • i podijelimo obje strane s a, dobivamo .

Rezultirajuća jednačina nam omogućava da izvučemo zaključke o njenim korijenima. Ovisno o vrijednostima a i c, vrijednost izraza može biti negativna (na primjer, ako je a=1 i c=2, onda ) ili pozitivna (na primjer, ako je a=−2 i c=6, tada ), nije jednako nuli , jer po uslovu c≠0. Pogledajmo slučajeve odvojeno.

Ako , tada jednadžba nema korijena. Ova izjava slijedi iz činjenice da je kvadrat bilo kojeg broja nenegativan broj. Iz ovoga slijedi da kada , Tada za bilo koji broj p jednakost ne može biti istinita.

Ako je , onda je situacija s korijenima jednadžbe drugačija. U ovom slučaju, ako se sjetimo o , tada korijen jednadžbe odmah postaje očigledan to je broj, budući da . Lako je pretpostaviti da je broj također korijen jednadžbe, zaista, . Ova jednadžba nema druge korijene, što se može prikazati, na primjer, kontradikcijom. Hajde da to uradimo.

Označimo korijene upravo najavljene jednadžbe sa x 1 i −x 1 . Pretpostavimo da jednačina ima još jedan korijen x 2, različit od navedenih korijena x 1 i −x 1. Poznato je da zamjena njenih korijena u jednadžbu umjesto x pretvara jednačinu u ispravnu numeričku jednakost. Za x 1 i −x 1 imamo , a za x 2 imamo . Svojstva numeričkih jednakosti nam omogućavaju da izvodimo pojam oduzimanja od tačne vrijednosti numeričke jednakosti, dakle oduzimanje relevantne dijelove jednakosti i daje x 1 2 −x 2 2 =0. Svojstva operacija sa brojevima nam omogućavaju da prepišemo rezultujuću jednakost kao (x 1 −x 2)·(x 1 +x 2)=0. Znamo da je proizvod dva broja jednak nuli ako i samo ako je barem jedan od njih jednak nuli. Dakle, iz rezultirajuće jednakosti slijedi da je x 1 −x 2 =0 i/ili x 1 +x 2 =0, što je isto, x 2 =x 1 i/ili x 2 =−x 1. Tako smo došli do kontradikcije, jer smo na početku rekli da je korijen jednačine x 2 različit od x 1 i −x 1. Ovo dokazuje da jednačina nema korijene osim i .

Hajde da sumiramo informacije u ovom paragrafu. Nepotpuna kvadratna jednadžba a x 2 +c=0 je ekvivalentna jednadžbi koja

  • nema korijena ako ,
  • ima dva korijena i , ako .

Razmotrimo primjere rješavanja nepotpunih kvadratnih jednadžbi oblika a·x 2 +c=0.

Počnimo s kvadratnom jednačinom 9 x 2 +7=0. Nakon pomjeranja slobodnog člana na desnu stranu jednačine, on će poprimiti oblik 9 x 2 =−7. Dijeljenjem obje strane rezultirajuće jednačine sa 9, dolazimo do . Budući da desna strana ima negativan broj, ova jednadžba nema korijena, prema tome, originalna nepotpuna kvadratna jednadžba 9 x 2 +7 = 0 nema korijena.

Riješimo još jednu nepotpunu kvadratnu jednačinu −x 2 +9=0. Pomeramo devetku na desnu stranu: −x 2 =−9. Sada podijelimo obje strane sa −1, dobićemo x 2 =9. Na desnoj strani nalazi se pozitivan broj, iz kojeg zaključujemo da je ili . Zatim zapisujemo konačni odgovor: nepotpuna kvadratna jednačina −x 2 +9=0 ima dva korijena x=3 ili x=−3.

a x 2 +b x=0

Ostaje da se pozabavimo rješenjem posljednje vrste nepotpunih kvadratnih jednadžbi za c=0. Nepotpune kvadratne jednadžbe oblika a x 2 + b x = 0 omogućavaju vam da riješite metoda faktorizacije. Očigledno možemo, smješteni na lijevoj strani jednačine, za što je dovoljno uzeti zajednički faktor x iz zagrada. Ovo nam omogućava da pređemo sa originalne nepotpune kvadratne jednačine na ekvivalentnu jednačinu oblika x·(a·x+b)=0. A ova jednačina je ekvivalentna skupu dvije jednačine x=0 i a·x+b=0, od kojih je posljednja linearna i ima korijen x=−b/a.

Dakle, nepotpuna kvadratna jednačina a·x 2 +b·x=0 ima dva korijena x=0 i x=−b/a.

Kako bismo konsolidirali materijal, analizirat ćemo rješenje na konkretnom primjeru.

Primjer.

Riješite jednačinu.

Rješenje.

Uzimanje x iz zagrada daje jednačinu . To je ekvivalentno dvjema jednadžbama x=0 i . Rešavanje onoga što imamo linearna jednačina: , i dijeljenje mješovitog broja sa običan razlomak, mi nalazimo . Stoga su korijeni originalne jednadžbe x=0 i .

Nakon stjecanja potrebne prakse, rješenja ovakvih jednačina mogu se ukratko napisati:

odgovor:

x=0 , .

Diskriminant, formula za korijene kvadratne jednadžbe

Za rješavanje kvadratnih jednadžbi postoji formula korijena. Hajde da to zapišemo formula za korijene kvadratne jednadžbe: , Gdje D=b 2 −4 a c- takozvani diskriminanta kvadratne jednačine. Unos u suštini znači da .

Korisno je znati kako je korijenska formula izvedena i kako se koristi u pronalaženju korijena kvadratnih jednadžbi. Hajde da shvatimo ovo.

Izvođenje formule za korijene kvadratne jednadžbe

Trebamo riješiti kvadratnu jednačinu a·x 2 +b·x+c=0. Izvršimo neke ekvivalentne transformacije:

  • Možemo podijeliti obje strane ove jednačine brojem različitom od nule, što rezultira sljedećom kvadratnom jednačinom.
  • Sad odaberite cijeli kvadrat na njegovoj lijevoj strani: . Nakon toga, jednačina će poprimiti oblik.
  • U ovoj fazi moguće je posljednja dva člana prenijeti na desnu stranu sa suprotnim predznakom, imamo .
  • I transformirajmo izraz na desnoj strani: .

Kao rezultat, dolazimo do jednačine koja je ekvivalentna originalnoj kvadratnoj jednačini a·x 2 +b·x+c=0.

Jednadžbe slične forme već smo rješavali u prethodnim paragrafima, kada smo ih ispitivali. To nam omogućava da izvučemo sljedeće zaključke u vezi s korijenima jednadžbe:

  • ako je , tada jednačina nema realnih rješenja;
  • ako , tada jednadžba ima oblik , dakle, , iz kojeg je vidljiv njen jedini korijen;
  • ako , onda ili , što je isto kao ili , To jest, jednadžba ima dva korijena.

Dakle, prisustvo ili odsustvo korena jednadžbe, a samim tim i originalne kvadratne jednačine, zavisi od predznaka izraza na desnoj strani. Zauzvrat, predznak ovog izraza je određen predznakom brojioca, pošto je imenilac 4·a 2 uvijek pozitivan, odnosno predznakom izraza b 2 −4·a·c. Ovaj izraz b 2 −4 a c je nazvan diskriminanta kvadratne jednačine i označeno pismom D. Odavde je suština diskriminanta jasna - na osnovu njegove vrijednosti i predznaka zaključuju da li kvadratna jednačina ima realne korijene, i ako ima, koji je njihov broj - jedan ili dva.

Vratimo se na jednadžbu i prepišimo je koristeći diskriminantnu notaciju: . I donosimo zaključke:

  • ako D<0 , то это уравнение не имеет действительных корней;
  • ako je D=0, onda ova jednadžba ima jedan korijen;
  • konačno, ako je D>0, onda jednačina ima dva korijena ili, što se može prepisati u obliku ili, a nakon proširenja i dovođenja razlomaka na zajednički nazivnik dobijamo.

Tako smo izveli formule za korijene kvadratne jednadžbe, izgledaju kao , gdje se diskriminanta D izračunava po formuli D=b 2 −4·a·c.

Uz njihovu pomoć, uz pozitivan diskriminant, možete izračunati oba realna korijena kvadratne jednadžbe. Kada je diskriminant jednak nuli, obje formule daju istu vrijednost korijena, što odgovara jedino rešenje kvadratna jednačina. I kada negativan diskriminant Kada pokušamo upotrijebiti formulu za korijene kvadratne jednadžbe, suočavamo se s izvlačenjem kvadratnog korijena negativnog broja, što nas vodi izvan okvira školskog programa. Sa negativnim diskriminantom, kvadratna jednadžba nema pravi korijen, ali ima par kompleksni konjugat korijene, koji se mogu pronaći korištenjem istih korijenskih formula koje smo dobili.

Algoritam za rješavanje kvadratnih jednadžbi korištenjem korijenskih formula

U praksi, kada rješavate kvadratne jednadžbe, možete odmah koristiti formulu korijena za izračunavanje njihovih vrijednosti. Ali ovo se više odnosi na pronalaženje složenih korijena.

Međutim, u školskom kursu algebre obično ne govorimo o kompleksnim, već o realnim korijenima kvadratne jednadžbe. U ovom slučaju, preporučljivo je, prije upotrebe formula za korijene kvadratne jednadžbe, prvo pronaći diskriminanta, uvjeriti se da nije negativna (inače možemo zaključiti da jednačina nema realne korijene), i tek onda izračunati vrijednosti korijena.

Gornje rezonovanje nam omogućava da pišemo algoritam za rješavanje kvadratne jednačine. Da biste riješili kvadratnu jednačinu a x 2 +b x+c=0, trebate:

  • koristeći diskriminantnu formulu D=b 2 −4·a·c, izračunaj njegovu vrijednost;
  • zaključiti da kvadratna jednadžba nema pravi korijen ako je diskriminanta negativna;
  • izračunati jedini korijen jednadžbe koristeći formulu ako je D=0;
  • pronađite dva realna korijena kvadratne jednadžbe koristeći formulu korijena ako je diskriminanta pozitivna.

Ovdje samo napominjemo da ako je diskriminanta jednaka nuli, također možete koristiti formulu da će dati istu vrijednost;

Možete prijeći na primjere korištenja algoritma za rješavanje kvadratnih jednadžbi.

Primjeri rješavanja kvadratnih jednačina

Razmotrimo rješenja tri kvadratne jednadžbe sa pozitivnim, negativnim i nultim diskriminantom. Nakon što se pozabavimo njihovim rješenjem, po analogiji će biti moguće riješiti bilo koju drugu kvadratnu jednačinu. Počnimo.

Primjer.

Naći korijene jednačine x 2 +2·x−6=0.

Rješenje.

U ovom slučaju imamo sljedeće koeficijente kvadratne jednačine: a=1, b=2 i c=−6. Prema algoritmu, prvo morate izračunati diskriminantu, da biste to učinili, zamijenimo naznačene a, b i c u diskriminantnu formulu, koju imamo D=b 2 −4·a·c=2 2 −4·1·(−6)=4+24=28. Pošto je 28>0, odnosno diskriminanta veća od nule, kvadratna jednadžba ima dva realna korijena. Nađimo ih koristeći korijensku formulu, dobijamo , ovdje možete pojednostaviti rezultirajuće izraze tako što ćete pomicanje množitelja izvan predznaka korijena nakon čega slijedi smanjenje razlomka:

odgovor:

Pređimo na sljedeći tipičan primjer.

Primjer.

Riješite kvadratnu jednačinu −4 x 2 +28 x−49=0 .

Rješenje.

Počinjemo od pronalaženja diskriminanta: D=28 2 −4·(−4)·(−49)=784−784=0. Dakle, ova kvadratna jednadžba ima jedan korijen, koji nalazimo kao , tj.

odgovor:

x=3.5.

Ostaje da razmotrimo rješavanje kvadratnih jednadžbi s negativnim diskriminantom.

Primjer.

Riješite jednačinu 5·y 2 +6·y+2=0.

Rješenje.

Evo koeficijenata kvadratne jednačine: a=5, b=6 i c=2. Zamjenjujemo ove vrijednosti u diskriminantnu formulu, koju imamo D=b 2 −4·a·c=6 2 −4·5·2=36−40=−4. Diskriminant je negativan, stoga ova kvadratna jednadžba nema pravi korijen.

Ako trebate naznačiti kompleksne korijene, tada primjenjujemo dobro poznatu formulu za korijene kvadratne jednadžbe i izvodimo akcije sa kompleksni brojevi :

odgovor:

nema pravih korena, složeni koreni su: .

Napomenimo još jednom da ako je diskriminanta kvadratne jednadžbe negativna, onda u školi obično odmah zapišu odgovor u kojem ukazuju da nema pravih korijena, a kompleksni korijeni nisu pronađeni.

Formula korijena za parne druge koeficijente

Formula za korijene kvadratne jednadžbe, gdje je D=b 2 −4·a·c omogućava vam da dobijete formulu više kompaktan izgled, koji vam omogućava da rješavate kvadratne jednadžbe s parnim koeficijentom za x (ili jednostavno sa koeficijentom koji ima oblik 2·n, na primjer, ili 14·ln5=2·7·ln5). Izvucimo je.

Recimo da trebamo riješiti kvadratnu jednačinu oblika a x 2 +2 n x+c=0. Pronađimo njegove korijene koristeći formulu koju poznajemo. Da bismo to učinili, izračunavamo diskriminant D=(2 n) 2 −4 a c=4 n 2 −4 a c=4 (n 2 −a c), a zatim koristimo formulu korijena:

Označimo izraz n 2 −a c kao D 1 (ponekad se označava kao D"). Tada će formula za korijene kvadratne jednadžbe koja se razmatra sa drugim koeficijentom 2 n poprimiti oblik , gdje je D 1 =n 2 −a·c.

Lako je vidjeti da je D=4·D 1, ili D 1 =D/4. Drugim riječima, D 1 je četvrti dio diskriminanta. Jasno je da je predznak D 1 isti kao i znak D . Odnosno, znak D 1 je takođe pokazatelj prisustva ili odsustva korena kvadratne jednačine.

Dakle, da biste riješili kvadratnu jednačinu sa drugim koeficijentom 2·n, trebate

  • Izračunajte D 1 =n 2 −a·c ;
  • Ako je D 1<0 , то сделать вывод, что действительных корней нет;
  • Ako je D 1 =0, onda izračunajte jedini korijen jednadžbe koristeći formulu;
  • Ako je D 1 >0, pronađite dva realna korijena koristeći formulu.

Razmotrimo rješavanje primjera pomoću formule korijena dobivene u ovom pasusu.

Primjer.

Riješite kvadratnu jednačinu 5 x 2 −6 x −32=0 .

Rješenje.

Drugi koeficijent ove jednačine može se predstaviti kao 2·(−3) . To jest, možete prepisati originalnu kvadratnu jednačinu u obliku 5 x 2 +2 (−3) x−32=0, ovdje a=5, n=−3 i c=−32, i izračunati četvrti dio diskriminatorno: D 1 =n 2 −a·c=(−3) 2 −5·(−32)=9+160=169. Pošto je njena vrijednost pozitivna, jednačina ima dva realna korijena. Pronađimo ih koristeći odgovarajuću formulu korijena:

Imajte na umu da je bilo moguće koristiti uobičajenu formulu za korijene kvadratne jednadžbe, ali bi u ovom slučaju trebalo obaviti više računskog rada.

odgovor:

Pojednostavljivanje oblika kvadratnih jednačina

Ponekad, prije nego što počnete izračunavati korijene kvadratne jednadžbe pomoću formula, ne škodi da postavite pitanje: "Da li je moguće pojednostaviti oblik ove jednadžbe?" Slažemo se da će u smislu proračuna biti lakše riješiti kvadratnu jednačinu 11 x 2 −4 x−6=0 nego 1100 x 2 −400 x−600=0.

Obično se pojednostavljivanje oblika kvadratne jednadžbe postiže množenjem ili dijeljenjem obje strane određenim brojem. Na primjer, u prethodnom pasusu bilo je moguće pojednostaviti jednačinu 1100 x 2 −400 x −600=0 dijeljenjem obje strane sa 100.

Slična transformacija se provodi s kvadratnim jednadžbama čiji koeficijenti nisu . U ovom slučaju obično dijelimo obje strane jednačine sa apsolutne vrijednosti njegove koeficijente. Na primjer, uzmimo kvadratnu jednačinu 12 x 2 −42 x+48=0. apsolutne vrijednosti njegovih koeficijenata: GCD(12, 42, 48)= GCD(GCD(12, 42), 48)= GCD(6, 48)=6. Dijeljenjem obje strane originalne kvadratne jednadžbe sa 6, dolazimo do ekvivalentne kvadratne jednačine 2 x 2 −7 x+8=0.

A množenje obje strane kvadratne jednadžbe obično se radi kako bi se riješili razlomaka koeficijenata. U ovom slučaju, množenje se vrši nazivnicima njegovih koeficijenata. Na primjer, ako se obje strane kvadratne jednadžbe pomnože sa LCM(6, 3, 1)=6, tada će ona poprimiti jednostavniji oblik x 2 +4·x−18=0.

U zaključku ove tačke, napominjemo da se oni gotovo uvijek oslobađaju minusa na najvećem koeficijentu kvadratne jednačine promjenom predznaka svih članova, što odgovara množenju (ili dijeljenju) obje strane sa −1. Na primjer, obično se prelazi sa kvadratne jednadžbe −2 x 2 −3 x+7=0 na rješenje 2 x 2 +3 x−7=0 .

Odnos između korijena i koeficijenata kvadratne jednadžbe

Formula za korijene kvadratne jednadžbe izražava korijene jednadžbe kroz njene koeficijente. Na osnovu formule korijena, možete dobiti druge odnose između korijena i koeficijenata.

Najpoznatije i najprimenljivije formule iz Vietine teoreme su oblika i . Konkretno, za datu kvadratnu jednačinu, zbir korijena jednak je drugom koeficijentu suprotnog predznaka, a proizvod korijena jednak je slobodnom članu. Na primjer, gledajući oblik kvadratne jednadžbe 3 x 2 −7 x + 22 = 0, možemo odmah reći da je zbir njenih korijena jednak 7/3, a proizvod korijena jednak 22 /3.

Koristeći već napisane formule, možete dobiti niz drugih veza između korijena i koeficijenata kvadratne jednadžbe. Na primjer, možete izraziti zbir kvadrata korijena kvadratne jednadžbe kroz njene koeficijente: .

Bibliografija.

  • algebra: udžbenik za 8. razred. opšte obrazovanje institucije / [Yu. N. Makarychev, N. G. Mindyuk, K. I. Neshkov, S. B. Suvorova]; uređeno od S. A. Telyakovsky. - 16. ed. - M.: Obrazovanje, 2008. - 271 str. : ill. - ISBN 978-5-09-019243-9.
  • Mordkovich A. G. Algebra. 8. razred. U 2 sata Dio 1. Udžbenik za učenike opšteobrazovnih ustanova / A. G. Mordkovich. - 11. izdanje, izbrisano. - M.: Mnemosyne, 2009. - 215 str.: ilustr. ISBN 978-5-346-01155-2.

Kvadratne jednačine se izučavaju u 8. razredu, tako da ovdje nema ništa komplikovano. Sposobnost njihovog rješavanja je apsolutno neophodna.

Kvadratna jednačina je jednačina oblika ax 2 + bx + c = 0, gdje su koeficijenti a, b i c proizvoljni brojevi, a a ≠ 0.

Prije proučavanja specifičnih metoda rješenja, imajte na umu da se sve kvadratne jednadžbe mogu podijeliti u tri klase:

  1. Nemaju korijene;
  2. Imati tačno jedan korijen;
  3. Imaju dva različita korijena.

Ovo je bitna razlika između kvadratnih jednačina i linearnih, gdje korijen uvijek postoji i jedinstven je. Kako odrediti koliko korijena ima jednačina? Postoji divna stvar za ovo - diskriminatorno.

Diskriminantno

Neka je data kvadratna jednačina ax 2 + bx + c = 0. Tada je diskriminanta jednostavno broj D = b 2 − 4ac.

Ovu formulu morate znati napamet. Odakle dolazi sada nije važno. Još jedna stvar je važna: po znaku diskriminanta možete odrediti koliko korijena ima kvadratna jednadžba. naime:

  1. Ako je D< 0, корней нет;
  2. Ako je D = 0, postoji tačno jedan korijen;
  3. Ako je D > 0, postojaće dva korena.

Imajte na umu: diskriminant označava broj korijena, a ne njihove znakove, kako iz nekog razloga mnogi vjeruju. Pogledajte primjere i sve ćete sami razumjeti:

Zadatak. Koliko korijena imaju kvadratne jednadžbe:

  1. x 2 − 8x + 12 = 0;
  2. 5x 2 + 3x + 7 = 0;
  3. x 2 − 6x + 9 = 0.

Napišimo koeficijente za prvu jednačinu i nađemo diskriminanta:
a = 1, b = −8, c = 12;
D = (−8) 2 − 4 1 12 = 64 − 48 = 16

Dakle, diskriminant je pozitivan, tako da jednačina ima dva različita korijena. Drugu jednačinu analiziramo na sličan način:
a = 5; b = 3; c = 7;
D = 3 2 − 4 5 7 = 9 − 140 = −131.

Diskriminant je negativan, nema korijena. Zadnja preostala jednačina je:
a = 1; b = −6; c = 9;
D = (−6) 2 − 4 1 9 = 36 − 36 = 0.

Diskriminanta je nula - korijen će biti jedan.

Imajte na umu da su koeficijenti zapisani za svaku jednačinu. Da, dugo je, da, zamorno je, ali nećete miješati šanse i praviti glupe greške. Odaberite za sebe: brzinu ili kvalitet.

Usput, ako se snađete, nakon nekog vremena nećete morati zapisivati ​​sve koeficijente. Takve operacije ćete izvoditi u svojoj glavi. Većina ljudi to počne raditi negdje nakon 50-70 riješenih jednačina - općenito, ne toliko.

Korijeni kvadratne jednadžbe

Sada pređimo na samo rješenje. Ako je diskriminanta D > 0, korijeni se mogu pronaći pomoću formula:

Osnovna formula za korijene kvadratne jednadžbe

Kada je D = 0, možete koristiti bilo koju od ovih formula - dobit ćete isti broj, što će biti odgovor. Konačno, ako D< 0, корней нет — ничего считать не надо.

  1. x 2 − 2x − 3 = 0;
  2. 15 − 2x − x 2 = 0;
  3. x 2 + 12x + 36 = 0.

Prva jednadžba:
x 2 − 2x − 3 = 0 ⇒ a = 1; b = −2; c = −3;
D = (−2) 2 − 4 1 (−3) = 16.

D > 0 ⇒ jednadžba ima dva korijena. Hajde da ih pronađemo:

Druga jednadžba:
15 − 2x − x 2 = 0 ⇒ a = −1; b = −2; c = 15;
D = (−2) 2 − 4 · (−1) · 15 = 64.

D > 0 ⇒ jednadžba opet ima dva korijena. Hajde da ih nađemo

\[\begin(align) & ((x)_(1))=\frac(2+\sqrt(64))(2\cdot \left(-1 \right))=-5; \\ & ((x)_(2))=\frac(2-\sqrt(64))(2\cdot \left(-1 \right))=3. \\ \end(poravnati)\]

Konačno, treća jednačina:
x 2 + 12x + 36 = 0 ⇒ a = 1; b = 12; c = 36;
D = 12 2 − 4 1 36 = 0.

D = 0 ⇒ jednačina ima jedan korijen. Može se koristiti bilo koja formula. Na primjer, prvi:

Kao što možete vidjeti iz primjera, sve je vrlo jednostavno. Ako znate formule i znate računati, neće biti problema. Najčešće se greške javljaju prilikom zamjene negativnih koeficijenata u formulu. Ovdje će opet pomoći gore opisana tehnika: doslovno pogledajte formulu, zapišite svaki korak - i vrlo brzo ćete se riješiti grešaka.

Nepotpune kvadratne jednadžbe

Dešava se da se kvadratna jednačina malo razlikuje od onoga što je dato u definiciji. Na primjer:

  1. x 2 + 9x = 0;
  2. x 2 − 16 = 0.

Lako je primijetiti da ovim jednačinama nedostaje jedan od pojmova. Takve kvadratne jednadžbe još je lakše riješiti od standardnih: ne zahtijevaju čak ni izračunavanje diskriminanta. Dakle, hajde da predstavimo novi koncept:

Jednačina ax 2 + bx + c = 0 naziva se nepotpuna kvadratna jednačina ako je b = 0 ili c = 0, tj. koeficijent varijable x ili slobodnog elementa jednak je nuli.

Naravno, potpuno je moguće Hard case, kada su oba ova koeficijenta jednaka nuli: b = c = 0. U ovom slučaju, jednačina ima oblik ax 2 = 0. Očigledno, takva jednačina ima jedan korijen: x = 0.

Razmotrimo preostale slučajeve. Neka je b = 0, onda ćemo dobiti nepotpunu kvadratnu jednačinu oblika ax 2 + c = 0. Transformirajmo je malo:

Od aritmetike Kvadratni korijen postoji samo od nenegativnog broja, zadnja jednakost ima smisla samo za (−c /a) ≥ 0. Zaključak:

  1. Ako je u nepotpunoj kvadratnoj jednadžbi oblika ax 2 + c = 0 nejednakost (−c /a) ≥ 0 zadovoljena, postojaće dva korena. Formula je data gore;
  2. Ako (−c /a)< 0, корней нет.

Kao što vidite, diskriminant nije bio potreban – u nepotpunim kvadratnim jednačinama uopšte nema složenih proračuna. Zapravo, nije potrebno čak ni zapamtiti nejednakost (−c /a) ≥ 0. Dovoljno je izraziti vrijednost x 2 i vidjeti šta se nalazi na drugoj strani znaka jednakosti. Ako postoji pozitivan broj, bit će dva korijena. Ako je negativan, korijena uopće neće biti.

Pogledajmo sada jednačine oblika ax 2 + bx = 0, u kojima je slobodni element jednak nuli. Ovdje je sve jednostavno: uvijek će postojati dva korijena. Dovoljno je faktorisati polinom:

Izuzimanje zajedničkog faktora iz zagrada

Proizvod je nula kada je barem jedan od faktora nula. Odatle potiču korijeni. U zaključku, pogledajmo nekoliko od ovih jednačina:

Zadatak. Riješite kvadratne jednadžbe:

  1. x 2 − 7x = 0;
  2. 5x 2 + 30 = 0;
  3. 4x 2 − 9 = 0.

x 2 − 7x = 0 ⇒ x · (x − 7) = 0 ⇒ x 1 = 0; x 2 = −(−7)/1 = 7.

5x 2 + 30 = 0 ⇒ 5x 2 = −30 ⇒ x 2 = −6. Nema korijena, jer kvadrat ne može biti jednak negativnom broju.

4x 2 − 9 = 0 ⇒ 4x 2 = 9 ⇒ x 2 = 9/4 ⇒ x 1 = 3/2 = 1,5; x 2 = −1,5.

Upotreba jednačina je široko rasprostranjena u našim životima. Koriste se u mnogim proračunima, izgradnji objekata, pa čak i u sportu. Čovjek je koristio jednačine u drevnim vremenima, a od tada se njihova upotreba samo povećava. Diskriminant vam omogućava da riješite bilo koju kvadratnu jednačinu koristeći opću formulu, koja ima sljedeći oblik:

Diskriminantna formula zavisi od stepena polinoma. Gornja formula je pogodna za rješavanje kvadratnih jednadžbi sledeći tip:

Diskriminant ima sljedeća svojstva koja morate znati:

* "D" je 0 kada polinom ima višestruke korijene (jednaki korijeni);

* "D" je simetričan polinom u odnosu na korijene polinoma i stoga je polinom u svojim koeficijentima; štaviše, koeficijenti ovog polinoma su cijeli brojevi bez obzira na ekstenziju u kojoj su korijeni uzeti.

Recimo da nam je data kvadratna jednadžba sljedećeg oblika:

1 jednadžba

Prema formuli imamo:

Pošto \, jednačina ima 2 korijena. Hajde da ih definišemo:

Gdje mogu riješiti jednačinu koristeći diskriminantni online rješavač?

Jednačinu možete riješiti na našoj web stranici https://site. Besplatni online rješavač će vam omogućiti da riješite online jednadžbe bilo koje složenosti za nekoliko sekundi. Sve što trebate učiniti je jednostavno unijeti svoje podatke u rješavač. Također možete pogledati video upute i saznati kako riješiti jednačinu na našoj web stranici, a ako imate bilo kakvih pitanja, možete ih postaviti u našoj VKontakte grupi http://vk.com/pocketteacher. Pridružite se našoj grupi, mi ćemo vam uvijek rado pomoći.

U ovom članku ćemo se osvrnuti na rješavanje nepotpunih kvadratnih jednadžbi.

Ali prvo, hajde da ponovimo koje se jednačine nazivaju kvadratnim. Jednačina oblika ax 2 + bx + c = 0, gdje je x varijabla, a koeficijenti a, b i c neki brojevi, a a ≠ 0, naziva se kvadrat. Kao što vidimo, koeficijent za x 2 nije jednak nuli, pa stoga koeficijenti za x ili slobodni član mogu biti jednaki nuli, u kom slučaju dobijamo nepotpunu kvadratnu jednačinu.

Postoje tri vrste nepotpunih kvadratnih jednadžbi:

1) Ako je b = 0, c ≠ 0, tada je ax 2 + c = 0;

2) Ako je b ≠ 0, c = 0, tada je ax 2 + bx = 0;

3) Ako je b = 0, c = 0, onda je ax 2 = 0.

  • Hajde da shvatimo kako to riješiti jednadžbe oblika ax 2 + c = 0.

Da bismo rešili jednačinu, pomerimo slobodni član c na desnu stranu jednačine, dobijamo

ax 2 = ‒s. Pošto je a ≠ 0, obje strane jednačine dijelimo sa a, tada je x 2 = ‒c/a.

Ako je ‒s/a > 0, tada jednačina ima dva korijena

x = ±√(–c/a) .

Ako je ‒c/a< 0, то это уравнение решений не имеет. Более наглядно решение данных уравнений представлено на схеме.

Pokušajmo na primjerima razumjeti kako riješiti takve jednadžbe.

Primjer 1. Riješite jednačinu 2x 2 ‒ 32 = 0.

Odgovor: x 1 = - 4, x 2 = 4.

Primjer 2. Riješite jednačinu 2x 2 + 8 = 0.

Odgovor: jednačina nema rješenja.

  • Hajde da shvatimo kako to riješiti jednačine oblika ax 2 + bx = 0.

Da bismo riješili jednačinu ax 2 + bx = 0, faktorizirajmo je, odnosno izvadimo x iz zagrada, dobićemo x(ax + b) = 0. Proizvod je jednak nuli ako je barem jedan od faktora jednak na nulu. Tada je ili x = 0, ili ax + b = 0. Rješavanjem jednačine ax + b = 0, dobijamo ax = - b, odakle je x = - b/a. Jednačina oblika ax 2 + bx = 0 uvijek ima dva korijena x 1 = 0 i x 2 = ‒ b/a. Pogledajte kako rješenje ovakvih jednačina izgleda na dijagramu.

Konsolidirajmo svoje znanje konkretnim primjerom.

Primjer 3. Riješite jednačinu 3x 2 ‒ 12x = 0.

x(3x ‒ 12) = 0

x= 0 ili 3x – 12 = 0

Odgovor: x 1 = 0, x 2 = 4.

  • Jednačine trećeg tipa ax 2 = 0 rješavaju se vrlo jednostavno.

Ako je ax 2 = 0, onda je x 2 = 0. Jednačina ima dva jednaka korijena x 1 = 0, x 2 = 0.

Radi jasnoće, pogledajmo dijagram.

Uvjerimo se prilikom rješavanja primjera 4 da se jednadžbe ovog tipa mogu riješiti vrlo jednostavno.

Primjer 4. Riješite jednačinu 7x 2 = 0.

Odgovor: x 1, 2 = 0.

Nije uvijek odmah jasno koju vrstu nepotpune kvadratne jednačine moramo riješiti. Razmotrite sljedeći primjer.

Primjer 5. Riješite jednačinu

Pomnožite obje strane jednačine sa zajednički imenilac, odnosno do 30

Hajde da ga smanjimo

5(5x 2 + 9) – 6(4x 2 – 9) = 90.

Hajde da otvorimo zagrade

25x 2 + 45 – 24x 2 + 54 = 90.

Dajmo slično

Pomaknimo 99 s lijeve strane jednačine na desnu, mijenjajući predznak u suprotan

Odgovor: nema korijena.

Pogledali smo kako se rješavaju nepotpune kvadratne jednadžbe. Nadam se da sada nećete imati poteškoća sa ovakvim zadacima. Budite oprezni kada određujete vrstu nepotpune kvadratne jednadžbe, tada ćete uspjeti.

Ako imate pitanja na ovu temu, prijavite se na moje lekcije, zajedno ćemo rješavati probleme koji se pojave.

web stranicu, kada kopirate materijal u cijelosti ili djelomično, link na izvor je obavezan.