Równanie kwadratowe ma co najwyżej dwa pierwiastki. Rozwiązywanie równań kwadratowych. Jak rozwiązać pełne równanie kwadratowe

Mam nadzieję, że po przestudiowaniu tego artykułu nauczysz się znajdować korzenie pełni równanie kwadratowe.

Za pomocą dyskryminatora rozwiązuje się tylko pełne równania kwadratowe; do rozwiązywania niekompletnych równań kwadratowych stosuje się inne metody, które znajdziesz w artykule „Rozwiązywanie niepełnych równań kwadratowych”.

Jakie równania kwadratowe nazywane są kompletnymi? Ten równania postaci ax 2 + b x + c = 0, gdzie współczynniki a, b i c nie są równe zero. Aby więc rozwiązać pełne równanie kwadratowe, musimy obliczyć dyskryminator D.

D = b 2 – 4ac.

W zależności od wartości wyróżnika zapiszemy odpowiedź.

Jeżeli dyskryminator jest liczbą ujemną (D< 0),то корней нет.

Jeśli dyskryminator równy zeru, wówczas x = (-b)/2a. Gdy dyskryminator jest liczbą dodatnią (D > 0),

wtedy x 1 = (-b - √D)/2a i x 2 = (-b + √D)/2a.

Na przykład. Rozwiązać równanie x 2– 4x + 4= 0.

re = 4 2 – 4 4 = 0

x = (- (-4))/2 = 2

Odpowiedź: 2.

Rozwiąż równanie 2 x 2 + x + 3 = 0.

re = 1 2 – 4 2 3 = – 23

Odpowiedź: brak korzeni.

Rozwiąż równanie 2 x 2 + 5x – 7 = 0.

D = 5 2 – 4 2 (–7) = 81

x 1 = (-5 - √81)/(2 2)= (-5 - 9)/4= – 3,5

x 2 = (-5 + √81)/(2 2) = (-5 + 9)/4=1

Odpowiedź: – 3,5; 1.

Wyobraźmy sobie więc rozwiązanie pełnych równań kwadratowych przy użyciu diagramu na rysunku 1.

Za pomocą tych wzorów można rozwiązać dowolne pełne równanie kwadratowe. Trzeba tylko uważać równanie zapisano jako wielomian postaci standardowej

A x 2 + bx + c, w przeciwnym razie możesz popełnić błąd. Na przykład pisząc równanie x + 3 + 2x 2 = 0, możesz błędnie stwierdzić, że

a = 1, b = 3 i c = 2. Następnie

D = 3 2 – 4 1 2 = 1 i wtedy równanie ma dwa pierwiastki. I to nie jest prawdą. (Patrz rozwiązanie przykładu 2 powyżej).

Jeżeli więc równanie nie jest zapisane jako wielomian postaci standardowej, to w pierwszej kolejności należy zapisać pełne równanie kwadratowe jako wielomian postaci standardowej (na pierwszym miejscu powinien znajdować się jednomian o największym wykładniku, czyli A x 2 , a potem mniej bx a następnie darmowy członek Z.

Rozwiązując zredukowane równanie kwadratowe i równanie kwadratowe z parzystym współczynnikiem w drugim członie, możesz użyć innych wzorów. Zapoznajmy się z tymi formułami. Jeżeli w pełnym równaniu kwadratowym drugi wyraz ma parzysty współczynnik (b = 2k), to równanie można rozwiązać korzystając ze wzorów pokazanych na schemacie na rysunku 2.

Pełne równanie kwadratowe nazywa się zredukowanym, jeśli współczynnik w x 2 równy jeden i równanie przyjmie postać x 2 + px + q = 0. Takie równanie można podać do rozwiązania lub można je otrzymać dzieląc wszystkie współczynniki równania przez współczynnik A, stojąc przy x 2 .

Rysunek 3 przedstawia schemat rozwiązywania zredukowanego kwadratu
równania. Spójrzmy na przykład zastosowania formuł omówionych w tym artykule.

Przykład. Rozwiązać równanie

3x 2 + 6x – 6 = 0.

Rozwiążmy to równanie, korzystając ze wzorów pokazanych na schemacie na rysunku 1.

re = 6 2 – 4 3 (– 6) = 36 + 72 = 108

√D = √108 = √(36 3) = 6√3

x 1 = (-6 - 6√3)/(2 3) = (6 (-1- √(3)))/6 = –1 – √3

x 2 = (-6 + 6√3)/(2 3) = (6 (-1+ √(3)))/6 = –1 + √3

Odpowiedź: –1 – √3; –1 + √3

Można zauważyć, że współczynnik x w tym równaniu jest liczbą parzystą, czyli b = 6 lub b = 2k, skąd k = 3. Następnie spróbujmy rozwiązać równanie korzystając ze wzorów pokazanych na schemacie rysunku D 1 = 3 2 – 3 · (– 6 ) = 9 + 18 = 27

√(D 1) = √27 = √(9 3) = 3√3

x 1 = (-3 - 3√3)/3 = (3 (-1 - √(3)))/3 = – 1 – √3

x 2 = (-3 + 3√3)/3 = (3 (-1 + √(3)))/3 = – 1 + √3

Odpowiedź: –1 – √3; –1 + √3. Zauważając, że wszystkie współczynniki w tym równaniu kwadratowym są podzielne przez 3 i wykonując dzielenie, otrzymujemy zredukowane równanie kwadratowe x 2 + 2x – 2 = 0 Rozwiąż to równanie korzystając ze wzorów na zredukowane równanie kwadratowe
równania rysunek 3.

re 2 = 2 2 – 4 (– 2) = 4 + 8 = 12

√(D 2) = √12 = √(4 3) = 2√3

x 1 = (-2 - 2√3)/2 = (2 (-1 - √(3)))/2 = – 1 – √3

x 2 = (-2 + 2√3)/2 = (2 (-1+ √(3)))/2 = – 1 + √3

Odpowiedź: –1 – √3; –1 + √3.

Jak widzimy, rozwiązując to równanie według różne formuły otrzymaliśmy tę samą odpowiedź. Dlatego po dokładnym opanowaniu wzorów pokazanych na schemacie na ryc. 1 zawsze będziesz w stanie rozwiązać dowolne pełne równanie kwadratowe.

stronie internetowej, przy kopiowaniu materiału w całości lub w części wymagany jest link do źródła.


Kontynuujemy studiowanie tematu ” rozwiązywanie równań" Zapoznaliśmy się już z równaniami liniowymi i przechodzimy do zapoznania się z nimi równania kwadratowe.

Najpierw przyjrzymy się, czym jest równanie kwadratowe i jak się je zapisuje ogólna perspektywa i podać powiązane definicje. Następnie użyjemy przykładów, aby szczegółowo zbadać, w jaki sposób rozwiązuje się niekompletne równania kwadratowe. Następnie przejdziemy do rozwiązywania pełnych równań, uzyskamy wzór na pierwiastek, zapoznamy się z dyskryminatorem równania kwadratowego i rozważymy rozwiązania typowych przykładów. Na koniec prześledźmy powiązania między pierwiastkami i współczynnikami.

Nawigacja strony.

Co to jest równanie kwadratowe? Ich typy

Najpierw musisz jasno zrozumieć, czym jest równanie kwadratowe. Dlatego logiczne jest rozpoczęcie rozmowy o równaniach kwadratowych od definicji równania kwadratowego, a także powiązanych definicji. Następnie możesz rozważyć główne typy równań kwadratowych: równania zredukowane i nieredukowane, a także równania pełne i niekompletne.

Definicja i przykłady równań kwadratowych

Definicja.

Równanie kwadratowe jest równaniem postaci a x 2 +b x+c=0, gdzie x jest zmienną, a, b i c to pewne liczby, a a jest różne od zera.

Powiedzmy od razu, że równania kwadratowe są często nazywane równaniami drugiego stopnia. Wynika to z faktu, że równanie kwadratowe jest równanie algebraiczne drugi stopień.

Podana definicja pozwala nam podać przykłady równań kwadratowych. Zatem 2 x 2 +6 x+1=0, 0,2 x 2 +2,5 x+0,03=0 itd. Są to równania kwadratowe.

Definicja.

Liczby a, b i c nazywane są współczynniki równania kwadratowego a·x 2 +b·x+c=0, a współczynnik a nazywany jest pierwszym lub najwyższym, lub współczynnikiem x 2, b jest drugim współczynnikiem, czyli współczynnikiem x, a c jest wyrazem wolnym .

Weźmy na przykład równanie kwadratowe w postaci 5 x 2 −2 x −3=0, tutaj współczynnik wiodący wynosi 5, drugi współczynnik jest równy −2, a wyraz wolny jest równy −3. Należy pamiętać, że gdy współczynniki b i/lub c są ujemne, jak w podanym przykładzie, krótka postać równania kwadratowego to 5 x 2 −2 x−3=0 , a nie 5 x 2 +(−2 ) ·x+(−3)=0 .

Warto zauważyć, że gdy współczynniki a i/lub b są równe 1 lub -1, zwykle nie są one wyraźnie obecne w równaniu kwadratowym, co wynika ze specyfiki zapisywania takich . Na przykład w równaniu kwadratowym y 2 −y+3=0 współczynnik wiodący wynosi jeden, a współczynnik y jest równy −1.

Równania kwadratowe zredukowane i nieredukowane

W zależności od wartości współczynnika wiodącego rozróżnia się równania kwadratowe zredukowane i nieredukowane. Podajmy odpowiednie definicje.

Definicja.

Nazywa się równanie kwadratowe, w którym współczynnik wiodący wynosi 1 dane równanie kwadratowe. W przeciwnym razie równanie kwadratowe ma postać nietknięty.

Według tę definicję, równania kwadratowe x 2 −3·x+1=0, x 2 −x−2/3=0, itd. – biorąc pod uwagę, że w każdym z nich pierwszy współczynnik jest równy jeden. A 5 x 2 −x−1=0 itd. - niezredukowane równania kwadratowe, ich współczynniki wiodące są różne od 1.

Z dowolnego niezredukowanego równania kwadratowego, dzieląc obie strony przez współczynnik wiodący, można przejść do równania zredukowanego. Działanie to jest transformacją równoważną, to znaczy otrzymane w ten sposób zredukowane równanie kwadratowe ma te same pierwiastki, co pierwotne nieredukowane równanie kwadratowe, lub podobnie jak ono nie ma pierwiastków.

Spójrzmy na przykład, jak dokonuje się przejścia z nieredukowanego równania kwadratowego do zredukowanego.

Przykład.

Z równania 3 x 2 +12 x−7=0 przejdź do odpowiedniego zredukowanego równania kwadratowego.

Rozwiązanie.

Musimy tylko podzielić obie strony pierwotnego równania przez wiodący współczynnik 3, jest on różny od zera, abyśmy mogli wykonać to działanie. Mamy (3 x 2 +12 x−7):3=0:3, czyli to samo, (3 x 2):3+(12 x):3−7:3=0, a następnie (3: 3) x 2 +(12:3) x−7:3=0, skąd . W ten sposób otrzymaliśmy zredukowane równanie kwadratowe, które jest równoważne pierwotnemu.

Odpowiedź:

Równania kwadratowe zupełne i niezupełne

Definicja równania kwadratowego zawiera warunek a≠0. Warunek ten jest niezbędny, aby równanie a x 2 + b x + c = 0 było kwadratowe, ponieważ gdy a = 0, faktycznie staje się równaniem liniowym w postaci b x + c = 0.

Jeśli chodzi o współczynniki b i c, mogą one być równe zero, zarówno indywidualnie, jak i razem. W takich przypadkach równanie kwadratowe nazywa się niekompletnym.

Definicja.

Nazywa się równaniem kwadratowym a x 2 +b x+c=0 niekompletny, jeśli przynajmniej jeden ze współczynników b, c jest równy zero.

Z kolei

Definicja.

Pełne równanie kwadratowe jest równaniem, w którym wszystkie współczynniki są różne od zera.

Takie nazwy nie zostały nadane przypadkowo. Stanie się to jasne po następujących dyskusjach.

Jeżeli współczynnik b wynosi zero, to równanie kwadratowe przyjmuje postać a·x 2 +0·x+c=0 i jest równoważne równaniu a·x 2 +c=0. Jeżeli c=0, czyli równanie kwadratowe ma postać a·x 2 +b·x+0=0, to można je przepisać jako a·x 2 +b·x=0. A przy b=0 i c=0 otrzymujemy równanie kwadratowe a·x 2 =0. Powstałe równania różnią się od pełnego równania kwadratowego tym, że ich lewa strona nie zawiera ani wyrazu ze zmienną x, ani wyrazu wolnego, ani obu. Stąd ich nazwa - niepełne równania kwadratowe.

Zatem równania x 2 +x+1=0 i −2 x 2 −5 x+0,2=0 są przykładami pełnych równań kwadratowych, a x 2 =0, −2 x 2 =0, 5 x 2 +3=0 , −x 2 −5 x=0 są niepełnymi równaniami kwadratowymi.

Rozwiązywanie niepełnych równań kwadratowych

Z informacji zawartych w poprzednim akapicie wynika, że ​​tak trzy typy niepełnych równań kwadratowych:

  • a·x 2 =0, odpowiadają temu współczynniki b=0 i c=0;
  • a x 2 +c=0 gdy b=0 ;
  • i a·x 2 +b·x=0, gdy c=0.

Przyjrzyjmy się po kolei, jak rozwiązuje się niepełne równania kwadratowe każdego z tych typów.

a x 2 = 0

Zacznijmy od rozwiązania niepełnych równań kwadratowych, w których współczynniki b i c są równe zeru, czyli równań w postaci a x 2 =0. Równanie a·x 2 =0 jest równoważne równaniu x 2 =0, które otrzymujemy z oryginału poprzez podzielenie obu części przez niezerową liczbę a. Oczywiście pierwiastek równania x 2 = 0 wynosi zero, ponieważ 0 2 = 0. Równanie to nie ma innych pierwiastków, co tłumaczy się faktem, że dla dowolnej niezerowej liczby p zachodzi nierówność p 2 > 0, co oznacza, że ​​dla p ≠0 równość p 2 = 0 nigdy nie jest osiągnięta.

Zatem niekompletne równanie kwadratowe a·x 2 =0 ma pojedynczy pierwiastek x=0.

Jako przykład podajemy rozwiązanie niepełnego równania kwadratowego -4 x 2 =0. Jest to równoważne równaniu x 2 = 0, jego jedynym pierwiastkiem jest x = 0, dlatego pierwotne równanie ma pojedynczy pierwiastek zero.

Krótkie rozwiązanie w tym przypadku można zapisać w następujący sposób:
−4 x 2 =0 ,
x2 =0,
x=0 .

ax2 +c=0

Przyjrzyjmy się teraz, jak rozwiązuje się niepełne równania kwadratowe, w których współczynnik b wynosi zero, a c≠0, czyli równania w postaci a x 2 +c=0. Wiemy, że przeniesienie wyrazu z jednej strony równania na drugą z przeciwnym znakiem, a także podzielenie obu stron równania przez liczbę niezerową daje równanie równoważne. Dlatego możemy przeprowadzić następujące równoważne przekształcenia niepełnego równania kwadratowego a x 2 +c=0:

  • przesuń c na prawą stronę, co daje równanie a x 2 =−c,
  • i dzielimy obie strony przez a, otrzymujemy .

Otrzymane równanie pozwala nam wyciągnąć wnioski na temat jego pierwiastków. W zależności od wartości a i c wartość wyrażenia może być ujemna (na przykład, jeśli a=1 i c=2, to ) lub dodatnia (na przykład, jeśli a=−2 i c=6, wtedy ), nie jest to zero , ponieważ zgodnie z warunkiem c≠0. Przyjrzyjmy się przypadkom osobno.

Jeśli , to równanie nie ma pierwiastków. To stwierdzenie wynika z faktu, że kwadrat dowolnej liczby jest liczbą nieujemną. Wynika z tego, że gdy , to dla dowolnej liczby p równość nie może być prawdziwa.

Jeśli , to sytuacja z pierwiastkami równania jest inna. W tym przypadku, jeśli pamiętamy o , pierwiastek równania od razu staje się oczywisty; Łatwo zgadnąć, że liczba ta jest w istocie także pierwiastkiem równania. Równanie to nie ma innych pierwiastków, co można wykazać na przykład przez sprzeczność. Zróbmy to.

Oznaczmy pierwiastki równania właśnie ogłoszonego jako x 1 i −x 1 . Załóżmy, że równanie ma jeszcze jeden pierwiastek x 2, inny niż wskazane pierwiastki x 1 i −x 1. Wiadomo, że podstawienie jego pierwiastków do równania zamiast x powoduje, że równanie staje się poprawną równością liczbową. Dla x 1 i −x 1 mamy , a dla x 2 mamy . Właściwości równości liczbowych pozwalają nam na odejmowanie wartości wyraz po wyrazie równości numeryczne, więc odejmowanie odpowiednie części równości i daje x 1 2 −x 2 2 =0. Właściwości operacji na liczbach pozwalają nam zapisać otrzymaną równość jako (x 1 −x 2)·(x 1 +x 2)=0. Wiemy, że iloczyn dwóch liczb jest równy zero wtedy i tylko wtedy, gdy przynajmniej jedna z nich jest równa zero. Zatem z otrzymanej równości wynika, że ​​x 1 −x 2 =0 i/lub x 1 +x 2 =0, czyli to samo, x 2 =x 1 i/lub x 2 =−x 1. Doszliśmy więc do sprzeczności, ponieważ na początku powiedzieliśmy, że pierwiastek równania x 2 jest różny od x 1 i −x 1. To dowodzi, że równanie nie ma innych pierwiastków niż i .

Podsumujmy informacje zawarte w tym akapicie. Niekompletne równanie kwadratowe a x 2 +c=0 jest równoważne równaniu to

  • nie ma korzeni, jeśli ,
  • ma dwa pierwiastki i , jeśli .

Rozważmy przykłady rozwiązywania niepełnych równań kwadratowych postaci a·x 2 +c=0.

Zacznijmy od równania kwadratowego 9 x 2 +7=0. Po przesunięciu wyrazu wolnego na prawą stronę równania przyjmie on postać 9 x 2 =−7. Dzieląc obie strony otrzymanego równania przez 9, otrzymujemy . Ponieważ prawa strona ma liczbę ujemną, równanie to nie ma pierwiastków, dlatego pierwotne niekompletne równanie kwadratowe 9 x 2 +7 = 0 nie ma pierwiastków.

Rozwiążmy kolejne niekompletne równanie kwadratowe −x 2 +9=0. Przesuwamy dziewiątkę w prawą stronę: −x 2 = −9. Teraz dzielimy obie strony przez -1, otrzymujemy x 2 = 9. Po prawej stronie znajduje się liczba dodatnia, z której wnioskujemy, że lub . Następnie zapisujemy ostateczną odpowiedź: niepełne równanie kwadratowe −x 2 +9=0 ma dwa pierwiastki x=3 lub x=−3.

ax2 +bx=0

Pozostaje zająć się rozwiązaniem ostatniego typu niepełnych równań kwadratowych dla c=0. Niekompletne równania kwadratowe postaci a x 2 + b x = 0 pozwalają rozwiązać metoda faktoryzacji. Oczywiście możemy, znajdując się po lewej stronie równania, dla którego wystarczy wyjąć wspólny współczynnik x z nawiasów. Pozwala nam to przejść od pierwotnego niepełnego równania kwadratowego do równoważnego równania w postaci x·(a·x+b)=0. Równanie to jest równoważne zbiorowi dwóch równań x=0 i a·x+b=0, z których drugie jest liniowe i ma pierwiastek x=−b/a.

Zatem niepełne równanie kwadratowe a·x 2 +b·x=0 ma dwa pierwiastki x=0 i x=−b/a.

Aby skonsolidować materiał, przeanalizujemy rozwiązanie na konkretnym przykładzie.

Przykład.

Rozwiązać równanie.

Rozwiązanie.

Usunięcie x z nawiasów daje równanie . Jest to równoważne dwóm równaniom x=0 i . Rozwiązywanie tego, co mamy równanie liniowe: i dzielenie liczby mieszanej przez ułamek wspólny, znaleźliśmy . Dlatego pierwiastki pierwotnego równania to x=0 i .

Po nabyciu niezbędnej praktyki rozwiązania takich równań można w skrócie zapisać:

Odpowiedź:

x=0 , .

Dyskryminator, wzór na pierwiastki równania kwadratowego

Aby rozwiązać równania kwadratowe, istnieje wzór na pierwiastek. Zapiszmy to wzór na pierwiastki równania kwadratowego: , Gdzie D=b 2 −4 za do- tak zwana dyskryminator równania kwadratowego. Wpis zasadniczo oznacza, że ​​.

Warto wiedzieć, w jaki sposób wyprowadzono wzór na pierwiastek i jak można go wykorzystać do znalezienia pierwiastków równań kwadratowych. Rozwiążmy to.

Wyprowadzenie wzoru na pierwiastki równania kwadratowego

Musimy rozwiązać równanie kwadratowe a·x 2 +b·x+c=0. Wykonajmy kilka równoważnych przekształceń:

  • Możemy podzielić obie strony tego równania przez niezerową liczbę a, w wyniku czego otrzymamy następujące równanie kwadratowe.
  • Teraz wybierz cały kwadrat po lewej stronie: . Następnie równanie przyjmie postać .
  • Na tym etapie możliwe jest przeniesienie dwóch ostatnich wyrazów na prawą stronę z przeciwnym znakiem, mamy .
  • Przekształćmy także wyrażenie po prawej stronie: .

W efekcie otrzymujemy równanie równoważne pierwotnemu równaniu kwadratowemu a·x 2 +b·x+c=0.

Rozwiązaliśmy już równania o podobnej formie w poprzednich akapitach, kiedy to sprawdzaliśmy. Pozwala nam to wyciągnąć następujące wnioski dotyczące pierwiastków równania:

  • jeżeli , to równanie nie ma rzeczywistych rozwiązań;
  • jeżeli , to równanie ma zatem postać , z której widoczny jest jedyny jego pierwiastek;
  • jeśli , to lub , co jest tym samym co lub , to znaczy równanie ma dwa pierwiastki.

Zatem obecność lub brak pierwiastków równania, a zatem pierwotnego równania kwadratowego, zależy od znaku wyrażenia po prawej stronie. Z kolei znak tego wyrażenia wyznacza znak licznika, gdyż mianownik 4·a 2 jest zawsze dodatni, czyli znak wyrażenia b 2 −4·a·c. To wyrażenie b 2 −4 a c zostało nazwane dyskryminator równania kwadratowego i oznaczony literą D. Stąd jasna jest istota dyskryminatora - na podstawie jego wartości i znaku wnioskują, czy równanie kwadratowe ma rzeczywiste pierwiastki, a jeśli tak, to jaka jest ich liczba - jeden czy dwa.

Wróćmy do równania i przepiszmy je stosując notację dyskryminacyjną: . I wyciągamy wnioski:

  • jeśli D<0 , то это уравнение не имеет действительных корней;
  • jeśli D=0, to równanie to ma jeden pierwiastek;
  • wreszcie, jeśli D>0, to równanie ma dwa pierwiastki lub, co można zapisać w postaci lub, i po rozwinięciu i sprowadzeniu ułamków do wspólnego mianownika otrzymujemy.

Wyprowadziliśmy więc wzory na pierwiastki równania kwadratowego, które wyglądają jak , gdzie dyskryminator D oblicza się ze wzoru D=b 2 −4·a·c.

Za ich pomocą, z dodatnim dyskryminatorem, możesz obliczyć oba pierwiastki rzeczywiste równania kwadratowego. Gdy dyskryminator jest równy zero, oba wzory dają tę samą wartość pierwiastka, odpowiadającą jedyne rozwiązanie równanie kwadratowe. I kiedy dyskryminator negatywny Kiedy próbujemy skorzystać ze wzoru na pierwiastek równania kwadratowego, mamy do czynienia z wyodrębnieniem pierwiastka kwadratowego z liczby ujemnej, co wykracza poza zakres szkolnego programu nauczania. W przypadku ujemnego dyskryminatora równanie kwadratowe nie ma rzeczywistych pierwiastków, ale ma parę złożony koniugat korzenie, które można znaleźć, korzystając z tych samych wzorów na pierwiastki, które otrzymaliśmy.

Algorytm rozwiązywania równań kwadratowych za pomocą wzorów pierwiastkowych

W praktyce przy rozwiązywaniu równań kwadratowych można od razu skorzystać ze wzoru na pierwiastek w celu obliczenia ich wartości. Ale jest to bardziej związane ze znalezieniem złożonych korzeni.

Jednak na szkolnym kursie algebry zwykle nie mówimy o zespolonych, ale o rzeczywistych pierwiastkach równania kwadratowego. W takim przypadku wskazane jest, aby przed użyciem wzorów na pierwiastki równania kwadratowego najpierw znaleźć dyskryminator, upewnić się, że jest on nieujemny (w przeciwnym razie możemy stwierdzić, że równanie nie ma pierwiastków rzeczywistych), i dopiero wtedy obliczyć wartości pierwiastków.

Powyższe rozumowanie pozwala nam pisać algorytm rozwiązywania równania kwadratowego. Aby rozwiązać równanie kwadratowe a x 2 +b x+c=0, należy:

  • korzystając ze wzoru dyskryminacyjnego D=b 2 −4·a·c oblicz jego wartość;
  • wywnioskować, że równanie kwadratowe nie ma pierwiastków rzeczywistych, jeśli wyróżnik jest ujemny;
  • obliczyć jedyny pierwiastek równania ze wzoru, jeśli D=0;
  • znajdź dwa rzeczywiste pierwiastki równania kwadratowego, korzystając ze wzoru na pierwiastek, jeśli wyróżnik jest dodatni.

Tutaj po prostu zauważamy, że jeśli dyskryminator jest równy zero, możesz również użyć wzoru, który da tę samą wartość co .

Można przejść do przykładów zastosowania algorytmu rozwiązywania równań kwadratowych.

Przykłady rozwiązywania równań kwadratowych

Rozważmy rozwiązania trzech równań kwadratowych z wyróżnikiem dodatnim, ujemnym i zerowym. Po zapoznaniu się z ich rozwiązaniem analogicznie możliwe będzie rozwiązanie dowolnego innego równania kwadratowego. Zaczynajmy.

Przykład.

Znajdź pierwiastki równania x 2 +2·x−6=0.

Rozwiązanie.

W tym przypadku mamy następujące współczynniki równania kwadratowego: a=1, b=2 i c=−6. Zgodnie z algorytmem należy najpierw obliczyć dyskryminator; w tym celu podstawiamy wskazane a, b i c do wzoru dyskryminacyjnego, który mamy D=b 2 −4·a·c=2 2 −4·1·(−6)=4+24=28. Ponieważ 28>0, czyli dyskryminator jest większy od zera, równanie kwadratowe ma dwa pierwiastki rzeczywiste. Znajdźmy je za pomocą wzoru głównego, otrzymamy , tutaj możesz uprościć wynikowe wyrażenia, wykonując przesunięcie mnożnika poza znak pierwiastka a następnie redukcja ułamka:

Odpowiedź:

Przejdźmy do następnego typowego przykładu.

Przykład.

Rozwiąż równanie kwadratowe −4 x 2 +28 x−49=0 .

Rozwiązanie.

Zaczynamy od znalezienia dyskryminatora: D=28 2 −4·(−4)·(−49)=784−784=0. Dlatego to równanie kwadratowe ma jeden pierwiastek, który znajdujemy jako , to znaczy

Odpowiedź:

x=3,5.

Pozostaje rozważyć rozwiązanie równań kwadratowych z ujemnym dyskryminatorem.

Przykład.

Rozwiąż równanie 5·y 2 +6·y+2=0.

Rozwiązanie.

Oto współczynniki równania kwadratowego: a=5, b=6 i c=2. Podstawiamy te wartości do wzoru dyskryminacyjnego, mamy D=b 2 −4·a·c=6 2 −4·5·2=36−40=−4. Dyskryminator jest ujemny, dlatego to równanie kwadratowe nie ma rzeczywistych pierwiastków.

Jeśli chcesz wskazać pierwiastki złożone, stosujemy dobrze znany wzór na pierwiastki równania kwadratowego i wykonujemy działania z Liczby zespolone :

Odpowiedź:

nie ma prawdziwych korzeni, złożone korzenie to: .

Zauważmy jeszcze raz, że jeśli wyróżnik równania kwadratowego jest ujemny, to w szkole zwykle od razu zapisują odpowiedź, w której wskazują, że nie ma pierwiastków rzeczywistych i nie znaleziono pierwiastków zespolonych.

Wzór na pierwiastek dla parzystych drugich współczynników

Wzór na pierwiastki równania kwadratowego, gdzie D=b 2 −4·a·c pozwala otrzymać wzór bardziej kompaktowy wygląd, co pozwala na rozwiązywanie równań kwadratowych z parzystym współczynnikiem dla x (lub po prostu ze współczynnikiem mającym na przykład postać 2·n lub 14·ln5=2,7·ln5). Wyciągnijmy ją.

Powiedzmy, że musimy rozwiązać równanie kwadratowe w postaci a x 2 +2 n x+c=0. Znajdźmy jego korzenie, korzystając ze znanego nam wzoru. W tym celu obliczamy dyskryminator D=(2 n) 2 −4 za c=4 n 2 −4 za c=4 (n 2 −a do), a następnie korzystamy ze wzoru na pierwiastek:

Oznaczmy wyrażenie n 2 −ac jako D 1 (czasami jest to oznaczone jako D „). Następnie wzór na pierwiastki rozważanego równania kwadratowego z drugim współczynnikiem 2 n przyjmie postać , gdzie D 1 = n 2 −a·c.

Łatwo zauważyć, że D=4·D 1, czyli D 1 =D/4. Innymi słowy, D 1 jest czwartą częścią dyskryminatora. Jest oczywiste, że znak D 1 jest taki sam jak znak D . Oznacza to, że znak D 1 jest również wskaźnikiem obecności lub braku pierwiastków równania kwadratowego.

Zatem, aby rozwiązać równanie kwadratowe z drugim współczynnikiem 2·n, potrzebujesz

  • Oblicz D 1 = n 2 −a·c ;
  • Jeśli D1<0 , то сделать вывод, что действительных корней нет;
  • Jeśli D 1 = 0, to oblicz jedyny pierwiastek równania, korzystając ze wzoru;
  • Jeśli D 1 > 0, to znajdź dwa pierwiastki rzeczywiste, korzystając ze wzoru.

Rozważmy rozwiązanie przykładu, korzystając ze wzoru na pierwiastek uzyskanego w tym akapicie.

Przykład.

Rozwiąż równanie kwadratowe 5 x 2 −6 x −32=0 .

Rozwiązanie.

Drugi współczynnik tego równania można przedstawić jako 2·(−3) . Oznacza to, że możesz przepisać pierwotne równanie kwadratowe w postaci 5 x 2 +2 (−3) x−32=0, tutaj a=5, n=−3 i c=−32 i obliczyć czwartą część dyskryminujący: re 1 = n 2 −a·c=(−3) 2 −5·(−32)=9+160=169. Ponieważ jego wartość jest dodatnia, równanie ma dwa rzeczywiste pierwiastki. Znajdźmy je, korzystając z odpowiedniego wzoru na pierwiastek:

Należy zauważyć, że możliwe było użycie zwykłego wzoru na pierwiastki równania kwadratowego, ale w tym przypadku konieczne byłoby wykonanie większej pracy obliczeniowej.

Odpowiedź:

Upraszczanie postaci równań kwadratowych

Czasami przed przystąpieniem do obliczania pierwiastków równania kwadratowego za pomocą wzorów nie zaszkodzi zadać pytanie: „Czy można uprościć postać tego równania?” Zgadzam się, że pod względem obliczeniowym łatwiej będzie rozwiązać równanie kwadratowe 11 x 2 −4 x−6=0 niż 1100 x 2 −400 x−600=0.

Zazwyczaj uproszczenie postaci równania kwadratowego osiąga się poprzez pomnożenie lub podzielenie obu stron przez określoną liczbę. Na przykład w poprzednim akapicie można było uprościć równanie 1100 x 2 −400 x −600=0 dzieląc obie strony przez 100.

Podobną transformację przeprowadza się za pomocą równań kwadratowych, których współczynniki nie są . W tym przypadku zwykle dzielimy obie strony równania przez Wartości bezwzględne jego współczynniki. Weźmy na przykład równanie kwadratowe 12 x 2 −42 x+48=0. wartości bezwzględne jego współczynników: NWD(12, 42, 48)= NWD(NWD(12, 42), 48)= NWD(6, 48)=6. Dzieląc obie strony pierwotnego równania kwadratowego przez 6, otrzymujemy równoważne równanie kwadratowe 2 x 2 −7 x+8=0.

Mnożenie obu stron równania kwadratowego jest zwykle wykonywane w celu pozbycia się współczynników ułamkowych. W tym przypadku mnożenie odbywa się przez mianowniki jego współczynników. Na przykład, jeśli obie strony równania kwadratowego pomnożymy przez LCM(6, 3, 1)=6, wówczas przyjmiemy prostszą postać x 2 +4·x−18=0.

Podsumowując ten punkt, zauważamy, że prawie zawsze pozbywają się minusa przy najwyższym współczynniku równania kwadratowego, zmieniając znaki wszystkich wyrazów, co odpowiada mnożeniu (lub dzieleniu) obu stron przez -1. Na przykład zwykle przechodzi się od równania kwadratowego −2 x 2 −3 x+7=0 do rozwiązania 2 x 2 +3 x−7=0 .

Zależność pierwiastków i współczynników równania kwadratowego

Wzór na pierwiastki równania kwadratowego wyraża pierwiastki równania poprzez jego współczynniki. Na podstawie wzoru na pierwiastek można uzyskać inne zależności między pierwiastkami a współczynnikami.

Najbardziej znane i stosowane wzory z twierdzenia Viety mają postać i . W szczególności dla danego równania kwadratowego suma pierwiastków jest równa drugiemu współczynnikowi o przeciwnym znaku, a iloczyn pierwiastków jest równy członowi swobodnemu. Na przykład patrząc na postać równania kwadratowego 3 x 2 −7 x + 22 = 0, możemy od razu powiedzieć, że suma jego pierwiastków wynosi 7/3, a iloczyn pierwiastków wynosi 22 /3.

Korzystając z już napisanych wzorów, można uzyskać szereg innych powiązań między pierwiastkami i współczynnikami równania kwadratowego. Na przykład sumę kwadratów pierwiastków równania kwadratowego można wyrazić poprzez jego współczynniki: .

Bibliografia.

  • Algebra: podręcznik dla 8 klasy. ogólne wykształcenie instytucje / [Yu. N. Makaryczew, N. G. Mindyuk, K. I. Neshkov, S. B. Suvorova]; edytowany przez SA Telyakovsky. - wyd. 16. - M.: Edukacja, 2008. - 271 s. : chory. - ISBN 978-5-09-019243-9.
  • Mordkovich A.G. Algebra. 8 klasa. Za 2 godziny Część 1. Podręcznik dla uczniów szkół ogólnokształcących / A. G. Mordkovich. - wyd. 11, usunięte. - M.: Mnemosyne, 2009. - 215 s.: il. ISBN 978-5-346-01155-2.

Równania kwadratowe uczymy się w ósmej klasie, więc nie ma tu nic skomplikowanego. Umiejętność ich rozwiązywania jest absolutnie konieczna.

Równanie kwadratowe to równanie w postaci ax 2 + bx + c = 0, gdzie współczynniki a, b i c są liczbami dowolnymi, a a ≠ 0.

Przed przestudiowaniem konkretnych metod rozwiązywania należy pamiętać, że wszystkie równania kwadratowe można podzielić na trzy klasy:

  1. Nie mają korzeni;
  2. Mają dokładnie jeden korzeń;
  3. Mają dwa różne korzenie.

Jest to istotna różnica między równaniami kwadratowymi a równaniami liniowymi, w których pierwiastek zawsze istnieje i jest unikalny. Jak ustalić, ile pierwiastków ma równanie? Jest w tym coś cudownego - dyskryminujący.

Dyskryminujący

Niech zostanie podane równanie kwadratowe ax 2 + bx + c = 0. Wtedy wyróżnikiem będzie po prostu liczba D = b 2 - 4ac.

Tę formułę musisz znać na pamięć. Skąd pochodzi, nie jest teraz istotne. Ważna jest jeszcze jedna rzecz: po znaku dyskryminatora można określić, ile pierwiastków ma równanie kwadratowe. Mianowicie:

  1. Jeśli D< 0, корней нет;
  2. Jeśli D = 0, istnieje dokładnie jeden pierwiastek;
  3. Jeśli D > 0, będą dwa pierwiastki.

Uwaga: dyskryminator wskazuje liczbę korzeni, a nie ich znaki, jak z jakiegoś powodu wielu ludzi uważa. Spójrz na przykłady, a sam wszystko zrozumiesz:

Zadanie. Ile pierwiastków mają równania kwadratowe:

  1. x 2 - 8x + 12 = 0;
  2. 5x 2 + 3x + 7 = 0;
  3. x 2 - 6x + 9 = 0.

Wypiszmy współczynniki pierwszego równania i znajdźmy dyskryminator:
a = 1, b = -8, c = 12;
re = (-8) 2 - 4 1 12 = 64 - 48 = 16

Zatem dyskryminator jest dodatni, więc równanie ma dwa różne pierwiastki. Drugie równanie analizujemy w podobny sposób:
a = 5; b = 3; c = 7;
re = 3 2 - 4 5 7 = 9 - 140 = -131.

Dyskryminator jest ujemny, nie ma pierwiastków. Ostatnie równanie jakie pozostało to:
a = 1; b = -6; c = 9;
re = (-6) 2 - 4 1 9 = 36 - 36 = 0.

Dyskryminator wynosi zero - pierwiastek będzie wynosić jeden.

Należy pamiętać, że dla każdego równania zapisano współczynniki. Tak, jest długi, tak, jest nudny, ale nie pomylisz szans i nie popełnisz głupich błędów. Wybierz dla siebie: szybkość lub jakość.

Nawiasem mówiąc, jeśli opanujesz tę czynność, po pewnym czasie nie będziesz musiał zapisywać wszystkich współczynników. Takie operacje będziesz wykonywać w swojej głowie. Większość ludzi zaczyna to robić gdzieś po 50-70 rozwiązanych równaniach - ogólnie rzecz biorąc, nie tak dużo.

Pierwiastki równania kwadratowego

Przejdźmy teraz do samego rozwiązania. Jeżeli dyskryminator D > 0, pierwiastki można znaleźć korzystając ze wzorów:

Podstawowy wzór na pierwiastki równania kwadratowego

Gdy D = 0, możesz użyć dowolnego z tych wzorów - otrzymasz tę samą liczbę, która będzie odpowiedzią. Wreszcie, jeśli D< 0, корней нет — ничего считать не надо.

  1. x 2 - 2x - 3 = 0;
  2. 15 - 2x - x 2 = 0;
  3. x 2 + 12 x + 36 = 0.

Pierwsze równanie:
x 2 − 2x − 3 = 0 ⇒ za = 1; b = -2; c = -3;
re = (-2) 2 - 4 1 (-3) = 16.

D > 0 ⇒ równanie ma dwa pierwiastki. Znajdźmy je:

Drugie równanie:
15 − 2x − x 2 = 0 ⇒ za = −1; b = -2; c = 15;
re = (-2) 2 - 4 · (-1) · 15 = 64.

D > 0 ⇒ równanie ponownie ma dwa pierwiastki. Znajdźmy je

\[\begin(align) & ((x)_(1))=\frac(2+\sqrt(64))(2\cdot \left(-1 \right))=-5; \\ & ((x)_(2))=\frac(2-\sqrt(64))(2\cdot \left(-1 \right))=3. \\ \end(align)\]

Wreszcie trzecie równanie:
x 2 + 12x + 36 = 0 ⇒ a = 1; b = 12; c = 36;
re = 12 2 - 4 1 36 = 0.

D = 0 ⇒ równanie ma jeden pierwiastek. Można zastosować dowolną formułę. Na przykład pierwszy:

Jak widać na przykładach, wszystko jest bardzo proste. Jeśli znasz wzory i potrafisz liczyć, nie będzie żadnych problemów. Najczęściej błędy pojawiają się przy podstawieniu do wzoru współczynników ujemnych. Tutaj znowu pomoże opisana powyżej technika: spójrz na formułę dosłownie, zapisz każdy krok - a już wkrótce pozbędziesz się błędów.

Niekompletne równania kwadratowe

Zdarza się, że równanie kwadratowe różni się nieco od tego, co podano w definicji. Na przykład:

  1. x 2 + 9 x = 0;
  2. x 2 - 16 = 0.

Łatwo zauważyć, że w równaniach tych brakuje jednego z członów. Takie równania kwadratowe są jeszcze łatwiejsze do rozwiązania niż standardowe: nie wymagają nawet obliczania dyskryminatora. Wprowadźmy więc nową koncepcję:

Równanie ax 2 + bx + c = 0 nazywa się niepełnym równaniem kwadratowym, jeśli b = 0 lub c = 0, tj. współczynnik zmiennej x lub elementu swobodnego jest równy zero.

Oczywiście jest to całkowicie możliwe Ciężki przypadek, gdy oba te współczynniki są równe zero: b = c = 0. W tym przypadku równanie przyjmuje postać ax 2 = 0. Oczywiście takie równanie ma jeden pierwiastek: x = 0.

Rozważmy pozostałe przypadki. Niech b = 0, wówczas otrzymamy niepełne równanie kwadratowe o postaci ax 2 + c = 0. Przekształćmy to trochę:

Od arytmetyki Pierwiastek kwadratowy istnieje tylko z liczby nieujemnej, ostatnia równość ma sens tylko dla (−c /a) ≥ 0. Wniosek:

  1. Jeżeli w niepełnym równaniu kwadratowym postaci ax 2 + c = 0 spełniona jest nierówność (−c /a) ≥ 0, to będą dwa pierwiastki. Wzór podano powyżej;
  2. Jeśli (-c /a)< 0, корней нет.

Jak widać, dyskryminator nie był wymagany — w niekompletnych równaniach kwadratowych nie ma żadnych skomplikowanych obliczeń. Właściwie nie trzeba nawet pamiętać nierówności (−c /a) ≥ 0. Wystarczy wyrazić wartość x 2 i zobaczyć, co jest po drugiej stronie znaku równości. Jeśli jest liczba dodatnia, będą dwa pierwiastki. Jeśli będzie ujemny, w ogóle nie będzie korzeni.

Przyjrzyjmy się teraz równaniom postaci ax 2 + bx = 0, w których element wolny jest równy zero. Tutaj wszystko jest proste: zawsze będą dwa korzenie. Wystarczy rozłożyć wielomian na czynniki:

Wyjmując wspólny czynnik z nawiasów

Iloczyn wynosi zero, gdy co najmniej jeden z czynników wynosi zero. To stąd pochodzą korzenie. Podsumowując, spójrzmy na kilka z tych równań:

Zadanie. Rozwiązuj równania kwadratowe:

  1. x 2 - 7x = 0;
  2. 5x 2 + 30 = 0;
  3. 4x 2 - 9 = 0.

x 2 − 7x = 0 ⇒ x · (x − 7) = 0 ⇒ x 1 = 0; x 2 = −(−7)/1 = 7.

5x 2 + 30 = 0 ⇒ 5x 2 = −30 ⇒ x 2 = −6. Nie ma korzeni, bo kwadrat nie może być równy liczbie ujemnej.

4x 2 - 9 = 0 ⇒ 4x 2 = 9 ⇒ x 2 = 9/4 ⇒ x 1 = 3/2 = 1,5; x 2 = −1,5.

Stosowanie równań jest szeroko rozpowszechnione w naszym życiu. Wykorzystuje się je w wielu obliczeniach, budowie konstrukcji, a nawet sporcie. Człowiek używał równań w czasach starożytnych i od tego czasu ich użycie tylko wzrosło. Dyskryminator pozwala rozwiązać dowolne równanie kwadratowe za pomocą wzoru ogólnego, który ma następującą postać:

Wzór dyskryminacyjny zależy od stopnia wielomianu. Powyższy wzór nadaje się do rozwiązywania równań kwadratowych następujący typ:

Dyskryminator ma następujące właściwości, które musisz znać:

* „D” wynosi 0, gdy wielomian ma wiele pierwiastków (równe pierwiastki);

* „D” jest wielomianem symetrycznym w odniesieniu do pierwiastków wielomianu, a zatem jest wielomianem pod względem jego współczynników; ponadto współczynniki tego wielomianu są liczbami całkowitymi niezależnie od rozszerzenia, w którym brane są pierwiastki.

Załóżmy, że mamy równanie kwadratowe w następującej postaci:

1 równanie

Zgodnie ze wzorem mamy:

Ponieważ \, równanie ma 2 pierwiastki. Zdefiniujmy je:

Gdzie mogę rozwiązać równanie za pomocą dyskryminacyjnego solwera online?

Równanie możesz rozwiązać na naszej stronie internetowej https://site. Bezpłatny solwer online pozwoli Ci rozwiązać równania online o dowolnej złożoności w ciągu kilku sekund. Wystarczy, że wprowadzisz swoje dane do solwera. Możesz także obejrzeć instrukcje wideo i dowiedzieć się, jak rozwiązać równanie na naszej stronie internetowej. Jeśli masz jakieś pytania, możesz je zadać w naszej grupie VKontakte http://vk.com/pocketteacher. Dołącz do naszej grupy, zawsze chętnie Ci pomożemy.

W tym artykule przyjrzymy się rozwiązywaniu niekompletnych równań kwadratowych.

Ale najpierw powtórzmy, jakie równania nazywane są równaniami kwadratowymi. Równanie w postaci ax 2 + bx + c = 0, gdzie x jest zmienną, a współczynniki a, b i c to pewne liczby, a a ≠ 0, nazywa się kwadrat. Jak widzimy, współczynnik dla x 2 nie jest równy zeru, dlatego współczynniki dla x lub wyrazu wolnego mogą być równe zeru, w takim przypadku otrzymamy niepełne równanie kwadratowe.

Istnieją trzy typy niepełnych równań kwadratowych:

1) Jeśli b = 0, c ≠ 0, to ax 2 + c = 0;

2) Jeśli b ≠ 0, c = 0, to ax 2 + bx = 0;

3) Jeśli b = 0, c = 0, to ax 2 = 0.

  • Zastanówmy się, jak rozwiązać równania postaci ax 2 + c = 0.

Aby rozwiązać równanie, przesuwamy wolny wyraz c na prawą stronę równania, otrzymujemy

topór 2 = ‒s. Ponieważ a ≠ 0, dzielimy obie strony równania przez a, wówczas x 2 = ‒c/a.

Jeżeli ‒с/а > 0, to równanie ma dwa pierwiastki

x = ±√(–c/a) .

Jeśli – c/a< 0, то это уравнение решений не имеет. Более наглядно решение данных уравнений представлено на схеме.

Spróbujmy zrozumieć na przykładach, jak rozwiązać takie równania.

Przykład 1. Rozwiąż równanie 2x 2 ‒ 32 = 0.

Odpowiedź: x 1 = - 4, x 2 = 4.

Przykład 2. Rozwiąż równanie 2x 2 + 8 = 0.

Odpowiedź: równanie nie ma rozwiązań.

  • Zastanówmy się, jak to rozwiązać równania postaci ax 2 + bx = 0.

Aby rozwiązać równanie ax 2 + bx = 0, rozłóżmy je na czynniki, czyli usuńmy x z nawiasów, otrzymamy x(ax + b) = 0. Iloczyn jest równy zeru, jeśli przynajmniej jeden z czynników jest równy do zera. Wtedy albo x = 0, albo ax + b = 0. Rozwiązując równanie ax + b = 0, otrzymujemy ax = - b, skąd x = - b/a. Równanie w postaci ax 2 + bx = 0 ma zawsze dwa pierwiastki x 1 = 0 i x 2 = ‒ b/a. Zobacz jak wygląda rozwiązanie równań tego typu na schemacie.

Utrwalmy naszą wiedzę na konkretnym przykładzie.

Przykład 3. Rozwiąż równanie 3x 2 ‒ 12x = 0.

x(3x ‒ 12) = 0

x= 0 lub 3x – 12 = 0

Odpowiedź: x 1 = 0, x 2 = 4.

  • Równania trzeciego typu ax 2 = 0 rozwiązuje się bardzo prosto.

Jeśli ax 2 = 0, to x 2 = 0. Równanie ma dwa równe pierwiastki x 1 = 0, x 2 = 0.

Dla jasności spójrzmy na diagram.

Rozwiązując Przykład 4 upewnijmy się, że równania tego typu dają się rozwiązać w bardzo prosty sposób.

Przykład 4. Rozwiąż równanie 7x 2 = 0.

Odpowiedź: x 1, 2 = 0.

Nie zawsze jest od razu jasne, jaki rodzaj niepełnego równania kwadratowego musimy rozwiązać. Rozważ następujący przykład.

Przykład 5. Rozwiązać równanie

Pomnóż obie strony równania przez wspólny mianownik czyli do 30

Skróćmy to

5(5x 2 + 9) – 6(4x 2 – 9) = 90.

Otwórzmy nawiasy

25x 2 + 45 – 24x 2 + 54 = 90.

Dajmy podobne

Przesuńmy 99 z lewej strony równania na prawą, zmieniając znak na przeciwny

Odpowiedź: brak korzeni.

Przyjrzeliśmy się, jak rozwiązuje się niekompletne równania kwadratowe. Mam nadzieję, że teraz nie będziesz miał żadnych trudności z takimi zadaniami. Zachowaj ostrożność przy określaniu rodzaju niekompletnego równania kwadratowego, wtedy odniesiesz sukces.

Jeżeli masz pytania na ten temat zapisz się na moje lekcje, wspólnie rozwiążemy pojawiające się problemy.

stronie internetowej, przy kopiowaniu materiału w całości lub w części wymagany jest link do źródła.